Figure S2

A

<table>
<thead>
<tr>
<th></th>
<th>B220</th>
<th>Tnf<sup>ARE/+</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>CD3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>F480</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th></th>
<th>Gr1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S4

A

B

Targeting strategy

C

flxed allele

D

deleted allele

E

Probe A

6.6Kb

Probe B

7.8Kb

Flp recombinase

Cre recombinase

Homologous recombination

KpnI

loxP

frt
Figure S8

(A) SFs

SSC-A

FSC-A

Cd45

Vcam

CD90

91.9%

2.02%

97.6%

71.7%

(B) VICs

SSC-A

FSC-A

Cd45

Gp38

Vimentin

65.7%

2.61%

98.4%

82.9%

(C) Genotype	Cd45 (%)	Vcam (%)	CD90 (%)
wt | 3.49 | 96.8 | 78.8
wt | 3.28 | 96.3 | 74.6
wt | 0.85 | 95.6 | 84.2
Tnf^{ARE/4} | 3.39 | 95.3 | 86.3
Tnf^{ARE/4} | 3.57 | 98.5 | 85.1
Tnf^{ARE/4} | 3.32 | 98.6 | 90.8
Tnf^{ARE/4}, Tnfrsf1b^{MCKO} | 3.44 | 98.7 | 90.3
Tnf^{ARE/4}, Tnfrsf1b^{MCKO} | 2.02 | 97.6 | 71.7
Tnf^{ARE/4}, Tnfrsf1b^{MCKO} | 1.52 | 94.5 | 89.1

(D) Genotype	Cd45 (%)	Gp38/Pdnp (%)	Vimentin (%)
wt | 2.64 | 91.1 | 94.6
wt | 2.57 | 90.1 | 84.6
wt | 2.39 | 87.5 | 84.3
Tnf^{ARE/4} | 2.14 | 92.4 | 83.4
Tnf^{ARE/4} | 2.61 | 98.4 | 82.9
Tnf^{ARE/4} | 3.45 | 89 | 86.2
Tnf^{ARE/4}, Tnfrsf1b^{MCKO} | 2.16 | 97.1 | 82.3
Tnf^{ARE/4}, Tnfrsf1b^{MCKO} | 2.66 | 96.5 | 81.4
Tnf^{ARE/4}, Tnfrsf1b^{MCKO} | 2.37 | 98.2 | 85.9