Supplemental Table 1: Primer Sequences for qPCR

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fbln1</td>
<td>GACTGCTCGCTCTCCTACAC</td>
<td>GCTCCTCCAGTTGGTGTA</td>
</tr>
<tr>
<td>Col6a3</td>
<td>GCCTGATTGGGGAACAAGGA</td>
<td>ATTTCCAGTGCCCTCCTTCG</td>
</tr>
<tr>
<td>Vcan</td>
<td>GATCATCTGGACGGGATGT</td>
<td>GTTTGACACTCTGCTTCGG</td>
</tr>
<tr>
<td>Col4a2</td>
<td>GGAGAGGCTGGATTCTTCG</td>
<td>TCATCCCCGGCAGGATTAG</td>
</tr>
<tr>
<td>Col4a1</td>
<td>CTCTGTGTTGGTCCTCCG</td>
<td>CCAGAGCACCACAATCAC</td>
</tr>
<tr>
<td>Il15</td>
<td>AGAGTTGGACGAAGAGGGGA</td>
<td>TGCTTTGAAGAGCCAGAGG</td>
</tr>
<tr>
<td>Il6</td>
<td>CACTTCACAAGTGCGAGGCT</td>
<td>TCTGACAGTGCATCATCGCT</td>
</tr>
<tr>
<td>Ccl2</td>
<td>TGGGCTGTTGTCACAGTT</td>
<td>GAGTAGCAGCAGGTGAGTG</td>
</tr>
<tr>
<td>Cxcl13</td>
<td>CACCTCCAGGCGAATGAGG</td>
<td>TCGAGCTCACCTGGGAACAC</td>
</tr>
<tr>
<td>Tgfa</td>
<td>CTCTGCTAGCGCTGGTATC</td>
<td>TGTGGGAATCTGCGCAGCT</td>
</tr>
<tr>
<td>Cx3cl1</td>
<td>CCAATCCCAGTGACTTTCG</td>
<td>TCTGCTCCAGGATGATG</td>
</tr>
<tr>
<td>Fbln2</td>
<td>AGCTTTGCGACGCTTTGTC</td>
<td>GACTCTCGTGCAGTGGC</td>
</tr>
<tr>
<td>Matn2</td>
<td>GACTGCAGTCGCTGGAGGTT</td>
<td>GACTCTCGGGAGCTTGCA</td>
</tr>
<tr>
<td>Fbln5</td>
<td>CCACGATTTCAGGCTTTCG</td>
<td>TCGTCCACATCCACACACT</td>
</tr>
<tr>
<td>Eln</td>
<td>GACTTCTGGGAGGCTTTGGA</td>
<td>CCACCTGGCCTTGAAGCATA</td>
</tr>
<tr>
<td>Identifier</td>
<td>Vessel</td>
<td>Age</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>A0998</td>
<td>LAD</td>
<td>63</td>
</tr>
<tr>
<td>A1004</td>
<td>LAD1</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>LAD2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RCA2</td>
<td></td>
</tr>
<tr>
<td>A1007</td>
<td>RCA2</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>LAD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RCA3</td>
<td></td>
</tr>
<tr>
<td>A1010</td>
<td>LCX</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>RCA3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RCA2</td>
<td></td>
</tr>
<tr>
<td>A1016</td>
<td>LAD</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>LCX</td>
<td></td>
</tr>
<tr>
<td>A1024</td>
<td>Lmain</td>
<td>58</td>
</tr>
<tr>
<td>A1035</td>
<td>LAD</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>mRCA</td>
<td></td>
</tr>
<tr>
<td>A0997</td>
<td>mLCX</td>
<td>45</td>
</tr>
<tr>
<td>A1001</td>
<td>RCA2</td>
<td>28</td>
</tr>
<tr>
<td>A1043</td>
<td>LAD</td>
<td>65</td>
</tr>
<tr>
<td>A0937</td>
<td>LCA</td>
<td>43</td>
</tr>
<tr>
<td>A1044</td>
<td>mRCA</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>pRCA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lmain</td>
<td></td>
</tr>
<tr>
<td>A1013</td>
<td>RCA</td>
<td>49</td>
</tr>
</tbody>
</table>

Abbreviations for Supplemental Tables 1-4: LAD = left anterior descending coronary artery; RCA = right coronary artery; LCX = left circumflex artery; Lmain = proximal left coronary artery; pr = proximal region of vessel; m = mid region of vessel; di = distal region of vessel; CM = cardiomyopathy; V-tach = ventricular tachycardia; ASD = atrial septal defect; HD = heart defect; ARVC = arrhythmogenic right ventricular cardiomyopathy; Movat’s = Movat’s pentachrome stain; PSR = picrosirius red stain; SHG = second harmonic generation.

numbers following vessel name (e.g. RCA2) refer to non-contiguous segments of the same vessel from the same patient.
Supplemental Table 3: Atherosclerotic Hyperplasia Coronary Artery Samples

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Vessel</th>
<th>Age</th>
<th>Sex</th>
<th>Pathology</th>
<th>PTEN</th>
<th>αSMA</th>
<th>Movat’s</th>
<th>PSR</th>
<th>SHG</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0976</td>
<td>RCA</td>
<td>59</td>
<td>F</td>
<td>Aneurysm, hypertension</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A0990</td>
<td>LAD</td>
<td>61</td>
<td>M</td>
<td>ARVC</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A0998</td>
<td>Lmain</td>
<td>63</td>
<td>M</td>
<td>Non-ischemic CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1001</td>
<td>Lmain</td>
<td>28</td>
<td>F</td>
<td>Congenital Epstein anomaly</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1007</td>
<td>Lmain</td>
<td>24</td>
<td>M</td>
<td>Non-ischemic CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1013</td>
<td>LCX</td>
<td>49</td>
<td>M</td>
<td>Non-ischemic CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1016</td>
<td>pRCA</td>
<td>51</td>
<td>F</td>
<td>ASD congenital HD</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1017</td>
<td>dRCA</td>
<td>57</td>
<td>M</td>
<td>Adriamycin CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1024</td>
<td>pRCA</td>
<td>58</td>
<td>F</td>
<td>Non-failing donor</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1033</td>
<td>LCX</td>
<td>69</td>
<td>M</td>
<td>Hypertrophic CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Lmain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>mLAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>RCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Supplemental Table 4: Complex Plaque Coronary Artery Samples

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Vessel</th>
<th>Age</th>
<th>Sex</th>
<th>Pathology</th>
<th>PTEN</th>
<th>αSMA</th>
<th>Movat’s</th>
<th>PSR</th>
<th>SHG</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0976</td>
<td>LCX</td>
<td>59</td>
<td>F</td>
<td>Aneurysm, hypertension</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A0997</td>
<td>Lmain</td>
<td>45</td>
<td>M</td>
<td>Non-ischemic CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>mLCX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>RCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A0998</td>
<td>LAD</td>
<td>63</td>
<td>M</td>
<td>Non-ischemic CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1010</td>
<td>Lmain</td>
<td>45</td>
<td>M</td>
<td>Familial CM V-tach</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>RCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1019</td>
<td>dLAD</td>
<td>57</td>
<td>M</td>
<td>Ischemic CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1024</td>
<td>mLCX</td>
<td>58</td>
<td>F</td>
<td>Non-failing donor</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1035</td>
<td>mLCX</td>
<td>47</td>
<td>M</td>
<td>Hypertrophic CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1036</td>
<td>Lmain</td>
<td>55</td>
<td>M</td>
<td>Non-ischemic CM-sarcoid</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A0937</td>
<td>RCA</td>
<td>43</td>
<td>M</td>
<td>Non-failing donor</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A0920</td>
<td>LCX1</td>
<td>60</td>
<td>M</td>
<td>Ischemic CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Lmain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Identifier</td>
<td>Vessel</td>
<td>Age</td>
<td>Sex</td>
<td>Pathology</td>
<td>PTEN</td>
<td>αSMA</td>
<td>Movat’s</td>
<td>PSR</td>
<td>SHG</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-------------------------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>A0921</td>
<td>RCA</td>
<td>31</td>
<td>M</td>
<td>Non-ischemic CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1012</td>
<td>LCX1</td>
<td>39</td>
<td>F</td>
<td>Non-ischemic CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>RCA2</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>LAD3</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>LAD1</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>LCX2</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>A1020</td>
<td>RCA4</td>
<td>44</td>
<td>M</td>
<td>Non-ischemic CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>mRCA2</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>mRCA1</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1023</td>
<td>prRCA</td>
<td>26</td>
<td>M</td>
<td>Non-ischemic CM (viral)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>mRCA4</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1025</td>
<td>Lmain</td>
<td>38</td>
<td>M</td>
<td>Non-ischemic CM</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>prRCA</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>mRCA2</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>diRCA1</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1032</td>
<td>RCA1</td>
<td>37</td>
<td>M</td>
<td>Non-ischemic CM</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>LCX</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>RCA2</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>pRCA1</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A0917</td>
<td>RCA</td>
<td>27</td>
<td>M</td>
<td>Familial CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>LAD</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1028</td>
<td>mRCA</td>
<td>49</td>
<td>M</td>
<td>Ischemic CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>A1037</td>
<td>mRCA</td>
<td>40</td>
<td>M</td>
<td>Non-ischemic CM</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A0989</td>
<td>Lmain</td>
<td>57</td>
<td>F</td>
<td>Ischemic CM</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1030</td>
<td>LCX</td>
<td>56</td>
<td>F</td>
<td>Non-ischemic CM-sarcoid</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1005</td>
<td>RCA1</td>
<td>31</td>
<td>M</td>
<td>Non-ischemic CM</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>A1045</td>
<td>LAD</td>
<td>56</td>
<td>F</td>
<td>Ischemic CM</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>LCX2</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>A0991</td>
<td>LCX</td>
<td>55</td>
<td>F</td>
<td>Ischemic CM</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>LAD</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1051</td>
<td>pRCA2</td>
<td>66</td>
<td>M</td>
<td>Ischemic CM</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A1048</td>
<td>pRCA2</td>
<td>66</td>
<td>M</td>
<td>Non-ischemic CM</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A0926</td>
<td>RCA</td>
<td>30</td>
<td>M</td>
<td>Familial NI CM</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Supplemental Figure 1. Proximity Ligation Assay Showing Interaction of PTEN and Serum Response Factor (SRF) in the Nucleus of Medial Smooth Muscle Cells (SMCs). Proximity ligation assay (PLA) and confocal microscopy were used to detect PTEN-SRF interactions in medial SMCs of human non-atherosclerotic coronary arteries. (a-g). PLA using mouse anti-PTEN and rabbit anti-SRF primary antibodies and anti-mouse PLUS and anti-rabbit MINUS PLA probe demonstrates PTEN-SRF nuclear interactions in medial SMCs of human NAH coronary. Shown are several representative images from an N=4 vessels. (h). Positive PTEN-SRF PLA signal in SMCs of an adventitial vasa vasorum microvessel. * = red blood cells in lumen of microvessel. For panels a-h: Red = Positive PLA; Blue = DAPI for cell nuclei; Scale bars = 50 μm. (i). Nuclei of medial SMCs were scored for percent positive PLA signal. 9 representative images from N=4 individual non-atherosclerotic arteries from N=4 patients.
Supplemental Figure 2. Reduced PTEN and alpha-Smooth Muscle Actin (αSMA) in Medial Smooth Muscle Cells (SMCs) adjacent to atherosclerotic plaques. Paired vessel segments with and without atherosclerotic plaque (P, No P) from the same coronary artery were stained for PTEN and αSMA. Confocal microscopy was performed with the same image acquisition parameters used for single cell analysis of Figures 3 and 6. Four to five 63X images were acquired for each pair of atherosclerotic and non-atherosclerotic segments from the same coronary artery and independent heart. A) The mean gray values of αSMA and PTEN within the cell boundary were determined by Image J in 216 individual media cells of arteries with no plaque (open box) and 237 individual cells of media with adjacent atherosclerotic plaque (gray box) from N=6 vessels and independent hearts. Box and whisker data plots indicate the median gray value (bar), interquartile range (box boundary) and minimum to maximum range (error bars) of data values. B) The mean gray values for αSMA (circles) and PTEN (squares) of individual SMCs were averaged for each vessel (No P segment, filled; P segment, open). Exact P values are shown for Mann Whitney, two-tailed, t test comparisons of αSMA and PTEN gray values between coronary artery segments with and without adjacent plaque.
Supplemental Table 6: Mouse Plasma Cholesterol and Triglyceride Levels

<table>
<thead>
<tr>
<th></th>
<th>Normal Chow</th>
<th></th>
<th>Western Diet 0.15% cholesterol</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
<td>KO</td>
<td>t-test</td>
<td>WT</td>
</tr>
<tr>
<td>Number</td>
<td>6</td>
<td>7</td>
<td>0.7308</td>
<td>6</td>
</tr>
<tr>
<td>Plasma Chol. (mg/dl)</td>
<td>100.2 (67.5-140.3)</td>
<td>119.5 (47.5-206.2)</td>
<td>0.7308</td>
<td>559.2 (513.6-593)</td>
</tr>
<tr>
<td>Plasma TG (mg/dl)</td>
<td>175.7 (144.7-213.6)</td>
<td>136.7 (133.4-176)</td>
<td>0.0734</td>
<td>228.4 (182.2-257.4)</td>
</tr>
<tr>
<td>Weight (gm)</td>
<td>29.4 (28.2-31.7)</td>
<td>30.5 (29.1-31.5)</td>
<td>0.6282</td>
<td>32.8 (31.3-34.4)</td>
</tr>
</tbody>
</table>

All variables are median values with (interquartile range)
Mann Whitney t-test of WT versus KO for each diet condition.
Supplemental Figure 3. Matched Intima and Media Thickness Between Coronary Arteries Exposed or not Exposed to Continuous Flow Left Ventricular Assist Devices (LVAD). Coronary arteries from explanted hearts of non-LVAD or CF-LVAD patients were matched for NAH. **A.** Representative H&E images showing similar intimal non-atherosclerotic hyperplasia in non-LVAD-exposed (left) compared CF-LVAD-exposed (right) vessels, and similar medial thickness when normalized to lumen diameter. Dashed lines delineate the arterial media; M = arterial media; I = arterial intima; scale bars = 100 µm. **B.** Intima areas (left graph) and media areas (right graph) of the coronary arteries were measured by Image J and normalized to the area of the vessel lumen to control for differences in vessel caliber. N=20 individual vessels per group. Compared to non-LVAD vessels, CF-LVAD vessels exhibited no change in relative intima or media areas (Two tailed Student's t tests, P=0.5305 for intima; P=0.5222 for media). Error bar represents mean ± standard deviation.
Supplemental Figure 4. Significantly Differentiated Genes Within Previously Published Datasets of Chemokine- and Cytokine-Associated Genes. 1173 differentially expressed genes were compared to previously published datasets of chemokine- and cytokine-associated genes. 79 genes were identified as commonly expressed in the PTEN-deficient SMC microarray and previously published chemokine / cytokine datasets.
Supplemental Figure 5. Significantly Differentiated Genes Within Previously Published Datasets of Matrix-Associated Genes. 1173 differentially expressed genes were compared to previously published datasets of extracellular matrix- and matrix remodeling-associated genes. 118 genes were identified as commonly expressed in the PTEN-deficient SMC microarray and previously published extracellular matrix datasets.
Supplemental Figure 6. Representative Western blot showing decreased PTEN expression in PTEN-deficient Smooth Muscle Cells (SMCs). Pools of SMCs stably expressing control (Ctrl) or PTEN-specific shRNA were serum-restricted for 72 h. Whole cell lysates were analyzed for total PTEN levels. Parental (non-infected) SMCs were used as a control for shRNA viral infection. β-Actin was used as a loading control.
Supplemental Table 7: Cytokine-associated Upregulated Genes In PTEN-Deficient SMCs

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Accession</th>
<th>Gene Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acvr2a</td>
<td>NM 031571</td>
<td>activin A receptor, type IIA</td>
</tr>
<tr>
<td>Adcy8</td>
<td>NM 017142</td>
<td>adenylyl cyclase 8 (brain)</td>
</tr>
<tr>
<td>Bmp2</td>
<td>NM 017178</td>
<td>bone morphogenetic protein 2</td>
</tr>
<tr>
<td>C1s</td>
<td>NM 138900</td>
<td>complement component 1, s subcomponent</td>
</tr>
<tr>
<td>C2</td>
<td>NM 172222</td>
<td>complement component 2</td>
</tr>
<tr>
<td>C3</td>
<td>NM 016994</td>
<td>complement component 3</td>
</tr>
<tr>
<td>C6</td>
<td>NM 176074</td>
<td>complement component 6</td>
</tr>
<tr>
<td>Ccl11</td>
<td>NM 019205</td>
<td>chemokine (C-C motif) ligand 11</td>
</tr>
<tr>
<td>Ccl2</td>
<td>NM 031530</td>
<td>chemokine (C-C motif) ligand 2</td>
</tr>
<tr>
<td>Ccl20</td>
<td>NM 019233</td>
<td>chemokine (C-C motif) ligand 20</td>
</tr>
<tr>
<td>Ccl7</td>
<td>NM 001007612</td>
<td>chemokine (C-C motif) ligand 7</td>
</tr>
<tr>
<td>Cd55</td>
<td>NM 022269</td>
<td>Cd55 molecule</td>
</tr>
<tr>
<td>Cth</td>
<td>BC089945</td>
<td>complement factor H</td>
</tr>
<tr>
<td>C1c1</td>
<td>NM 207615</td>
<td>cardiac trophin-like cytokine factor 1</td>
</tr>
<tr>
<td>Ctsk</td>
<td>NM 031560</td>
<td>cathepsin K</td>
</tr>
<tr>
<td>Cxcl1</td>
<td>NM 030845</td>
<td>chemokine (C-X-C motif) ligand 1</td>
</tr>
<tr>
<td>Cxcl13</td>
<td>NM 00107496</td>
<td>chemokine (C-X-C motif) ligand 13</td>
</tr>
<tr>
<td>Cxcl3</td>
<td>NM 138922</td>
<td>chemokine (C-X-C motif) ligand 3</td>
</tr>
<tr>
<td>Cxcl6</td>
<td>NM 022214</td>
<td>chemokine (C-X-C motif) ligand 6</td>
</tr>
<tr>
<td>Dnm1</td>
<td>NM 080689</td>
<td>dynamin 1</td>
</tr>
<tr>
<td>Dusp6</td>
<td>NM 053983</td>
<td>dual specificity phosphatase 6</td>
</tr>
<tr>
<td>Fgf1</td>
<td>NM 012846</td>
<td>fibroblast growth factor 1</td>
</tr>
<tr>
<td>Fgf7</td>
<td>NM 022182</td>
<td>fibroblast growth factor 7</td>
</tr>
<tr>
<td>Fgfl2</td>
<td>NM 012712</td>
<td>fibroblast growth factor receptor 2</td>
</tr>
<tr>
<td>Gna1</td>
<td>NM 013145</td>
<td>guanine nucleotide binding protein, alpha inhibiting 1</td>
</tr>
<tr>
<td>Gng8</td>
<td>NM 139185</td>
<td>guanine nucleotide binding protein, gamma 8</td>
</tr>
<tr>
<td>Hgf</td>
<td>NM 017017</td>
<td>hepatocyte growth factor</td>
</tr>
<tr>
<td>Il13ra1</td>
<td>NM 145789</td>
<td>interleukin 13 receptor, alpha 1</td>
</tr>
<tr>
<td>Il18bp</td>
<td>NM 053774</td>
<td>interleukin 18 binding protein</td>
</tr>
<tr>
<td>Il1f10</td>
<td>NM 00106571</td>
<td>interleukin 1 family, member 10</td>
</tr>
<tr>
<td>Il1f9</td>
<td>NM 00113790</td>
<td>interleukin 1 family, member 9</td>
</tr>
<tr>
<td>Il1r2</td>
<td>NM 053653</td>
<td>interleukin 1 receptor, type II</td>
</tr>
<tr>
<td>Il1rap</td>
<td>NM 012968</td>
<td>interleukin 1 receptor accessory protein</td>
</tr>
<tr>
<td>Il1rn</td>
<td>NM 022194</td>
<td>interleukin 1 receptor antagonist</td>
</tr>
<tr>
<td>Il20rb</td>
<td>DO2222846</td>
<td>interleukin 20 receptor beta</td>
</tr>
<tr>
<td>Il6</td>
<td>NM 012589</td>
<td>interleukin 6</td>
</tr>
<tr>
<td>Inhba</td>
<td>NM 017128</td>
<td>inhibin beta-A</td>
</tr>
<tr>
<td>Jak2</td>
<td>NM 031514</td>
<td>Janus kinase 2</td>
</tr>
<tr>
<td>Kitlg</td>
<td>NM 021843</td>
<td>KIT ligand</td>
</tr>
<tr>
<td>Lipo</td>
<td>NM 017208</td>
<td>lipopolysaccharide binding protein</td>
</tr>
<tr>
<td>Lgals3</td>
<td>NM 031832</td>
<td>lectin, galactoside-binding, soluble, 3</td>
</tr>
<tr>
<td>Nkfb1</td>
<td>ENSRNOT0000039838</td>
<td>nuclear factor kappa light polypeptide gene enhancer in B-cells 1</td>
</tr>
<tr>
<td>Nod1</td>
<td>NM 001109236</td>
<td>nucleotide-binding, oligomerization domain containing 1</td>
</tr>
<tr>
<td>Osmr</td>
<td>NM 001006384</td>
<td>oncostatin M receptor</td>
</tr>
<tr>
<td>Pdgfrc</td>
<td>NM 031317</td>
<td>platelet derived growth factor C</td>
</tr>
<tr>
<td>Pros1</td>
<td>NM 031086</td>
<td>protein S (alpha)</td>
</tr>
<tr>
<td>Sdf21</td>
<td>NM 001109433</td>
<td>stromal cell-derived factor 2-like 1</td>
</tr>
<tr>
<td>Sho4</td>
<td>ENSRNOT0000011084</td>
<td>SHC (Ssrc homology 2 domain containing) family, member 4</td>
</tr>
<tr>
<td>Tlr2</td>
<td>NM 198769</td>
<td>toll-like receptor 2</td>
</tr>
<tr>
<td>Tnfrsf12a</td>
<td>NM 181086</td>
<td>tumor necrosis factor receptor superfamily, member 12a</td>
</tr>
<tr>
<td>Tnfrsf1b</td>
<td>NM 130426</td>
<td>tumor necrosis factor receptor superfamily, member 1b</td>
</tr>
<tr>
<td>Tnfrsf22</td>
<td>XM 001096154</td>
<td>tumor necrosis factor receptor superfamily, member 22</td>
</tr>
<tr>
<td>Tnfrsf9</td>
<td>NM 001025773</td>
<td>tumor necrosis factor receptor superfamily, member 9</td>
</tr>
<tr>
<td>Ube26</td>
<td>NM 001024755</td>
<td>ubiquitin-conjugating enzyme E2L 6</td>
</tr>
<tr>
<td>Vegfa</td>
<td>NM 031835</td>
<td>vascular endothelial growth factor A</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Accession</td>
<td>Gene Description</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Adcy2</td>
<td>NM 031007</td>
<td>adenylate cyclase 2 (brain)</td>
</tr>
<tr>
<td>Adcy3</td>
<td>NM 130779</td>
<td>adenylate cyclase 3</td>
</tr>
<tr>
<td>Akt3</td>
<td>NM 031575</td>
<td>v-akt murine thymoma viral oncogene homolog 3</td>
</tr>
<tr>
<td>Bcl2</td>
<td>NM 016993</td>
<td>B-cell CLL/lymphoma 2</td>
</tr>
<tr>
<td>Cx3cl1</td>
<td>NM 134455</td>
<td>chemokine (C-X3-C motif) ligand 1</td>
</tr>
<tr>
<td>Dkk3</td>
<td>NM 138519</td>
<td>dickkopf homolog 3 (Xenopus laevis)</td>
</tr>
<tr>
<td>Fos</td>
<td>NM 022197</td>
<td>FBJ osteosarcoma oncogene</td>
</tr>
<tr>
<td>Ikbkb</td>
<td>NM 053355</td>
<td>inhibitor of kappa light polypeptide gene enhancer in B-cells</td>
</tr>
<tr>
<td>Ikbkg</td>
<td>NM 199103</td>
<td>inhibitor of kappaB kinase gamma</td>
</tr>
<tr>
<td>Il15</td>
<td>NM 013129</td>
<td>interleukin 15</td>
</tr>
<tr>
<td>Il1rl1</td>
<td>NM 001127689</td>
<td>interleukin 1 receptor-like 1</td>
</tr>
<tr>
<td>Il33</td>
<td>NM 001014166</td>
<td>interleukin 33</td>
</tr>
<tr>
<td>Lifr</td>
<td>NM 031048</td>
<td>leukemia inhibitory factor receptor alpha</td>
</tr>
<tr>
<td>Map3k1</td>
<td>NM 053887</td>
<td>mitogen activated protein kinase kinase kinase 1</td>
</tr>
<tr>
<td>Mapkapk3</td>
<td>NM 001012127</td>
<td>mitogen-activated protein kinase-activated protein kinase 3</td>
</tr>
<tr>
<td>Met</td>
<td>NM 031517</td>
<td>met proto-oncogene</td>
</tr>
<tr>
<td>Plcb4</td>
<td>NM 024353</td>
<td>phospholipase C, beta 4</td>
</tr>
<tr>
<td>Rock1</td>
<td>NM 031098</td>
<td>Rho-associated coiled-coil containing protein kinase 1</td>
</tr>
<tr>
<td>Tgb2</td>
<td>NM 031131</td>
<td>transforming growth factor, beta 2</td>
</tr>
<tr>
<td>Tgb3</td>
<td>NM 013174</td>
<td>transforming growth factor, beta 3</td>
</tr>
<tr>
<td>Tnfrsf11b</td>
<td>NM 012870</td>
<td>tumor necrosis factor receptor superfamily, member 11b</td>
</tr>
<tr>
<td>Tnfsf18</td>
<td>ENSRNOT00000039221</td>
<td>tumor necrosis factor (ligand) superfamily, member 18</td>
</tr>
<tr>
<td>Txnip</td>
<td>NM 001008767</td>
<td>thioredoxin interacting protein</td>
</tr>
<tr>
<td>Vegfc</td>
<td>NM 053653</td>
<td>vascular endothelial growth factor C</td>
</tr>
</tbody>
</table>
Supplemental Table 9: ECM-associated Upregulated Genes in PTEN-Deficient SMCs

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Accession</th>
<th>Gene Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam12</td>
<td>BC167766</td>
<td>ADAM metallopeptidase domain 12</td>
</tr>
<tr>
<td>Adams4</td>
<td>AB042272</td>
<td>ADAM metallopeptidase with thrombospondin type 1 motif, 4</td>
</tr>
<tr>
<td>Adams8</td>
<td>NM_001106811</td>
<td>ADAM metallopeptidase with thrombospondin type 1 motif, 8</td>
</tr>
<tr>
<td>Adamt1</td>
<td>XM_001061448</td>
<td>ADAMTS-like 1</td>
</tr>
<tr>
<td>Adamt3</td>
<td>NM_00107533</td>
<td>ADAMTS-like 3</td>
</tr>
<tr>
<td>Aebp1</td>
<td>NM_00100970</td>
<td>AE binding protein 1</td>
</tr>
<tr>
<td>Angp1</td>
<td>NM_053546</td>
<td>angiopoietin 1</td>
</tr>
<tr>
<td>B3gal3</td>
<td>NM_001128184</td>
<td>beta-1,3-glucoinoyltransferase 3 (glucuronosyltransferase 1)</td>
</tr>
<tr>
<td>Cd109</td>
<td>NM_00108671</td>
<td>CD109 molecule</td>
</tr>
<tr>
<td>Clec11a</td>
<td>NM_001012459</td>
<td>C-type lectin domain family 11, member a</td>
</tr>
<tr>
<td>Clu</td>
<td>NM_053021</td>
<td>clusterin</td>
</tr>
<tr>
<td>Col15a1</td>
<td>ENSRNOT00000017217</td>
<td>collagen, type XV, alpha 1</td>
</tr>
<tr>
<td>Col4a1</td>
<td>NM_001135009</td>
<td>collagen, type IV, alpha 1</td>
</tr>
<tr>
<td>Col4a2</td>
<td>XM_001075134</td>
<td>collagen, type IV, alpha 2</td>
</tr>
<tr>
<td>Col6a3</td>
<td>NM_00109008</td>
<td>procollagen, type VI, alpha 3</td>
</tr>
<tr>
<td>Colec12</td>
<td>NM_001025721</td>
<td>collectin sub-family member 12</td>
</tr>
<tr>
<td>Ctsi</td>
<td>NM_012039</td>
<td>cathepsin H</td>
</tr>
<tr>
<td>Dcn</td>
<td>NM_024129</td>
<td>decorin</td>
</tr>
<tr>
<td>Epit7</td>
<td>NM_139104</td>
<td>EGF-like-domain, multiple 7</td>
</tr>
<tr>
<td>Esm1</td>
<td>NM_026904</td>
<td>endothelial cell-specific molecule 1</td>
</tr>
<tr>
<td>Fam20c</td>
<td>NM_001012328</td>
<td>family with sequence similarity 20, member C</td>
</tr>
<tr>
<td>Fbln1</td>
<td>NM_001127547</td>
<td>fibulin 1</td>
</tr>
<tr>
<td>Fnmdc1</td>
<td>NM_001038615</td>
<td>fibronectin type III domain containing 1</td>
</tr>
<tr>
<td>Frzb</td>
<td>NM_00100527</td>
<td>frizzled-related protein</td>
</tr>
<tr>
<td>Fst</td>
<td>NM_012561</td>
<td>follistatin</td>
</tr>
<tr>
<td>Greml1</td>
<td>NM_019282</td>
<td>gremlin 1, cysteine knot superfamily, homolog (Xenopus laevis)</td>
</tr>
<tr>
<td>Has1</td>
<td>NM_172333</td>
<td>hyaluronan synthase 1</td>
</tr>
<tr>
<td>Hpse</td>
<td>NM_026605</td>
<td>heparanase</td>
</tr>
<tr>
<td>Hpx</td>
<td>NM_053318</td>
<td>hemopexin</td>
</tr>
<tr>
<td>Htr1</td>
<td>NM_031721</td>
<td>HtrA serine peptidase 1</td>
</tr>
<tr>
<td>Htra3</td>
<td>ENSRNOT00000010852</td>
<td>Htra serine peptidase 3</td>
</tr>
<tr>
<td>Itga7</td>
<td>NM_030842</td>
<td>integrin alpha 7</td>
</tr>
<tr>
<td>Itgb8</td>
<td>NM_00108726</td>
<td>integrin beta 8</td>
</tr>
<tr>
<td>Lama4</td>
<td>NM_00107635</td>
<td>laminin, alpha 4</td>
</tr>
<tr>
<td>Lox1</td>
<td>NM_00107592</td>
<td>lysyl oxidase-like 4</td>
</tr>
<tr>
<td>Libp1</td>
<td>NM_021587</td>
<td>latent transforming growth factor beta binding protein 1</td>
</tr>
<tr>
<td>Lum</td>
<td>NM_031050</td>
<td>lumican</td>
</tr>
<tr>
<td>Mgp</td>
<td>NM_012957</td>
<td>matrix Gla protein</td>
</tr>
<tr>
<td>Mmp19</td>
<td>NM_001107459</td>
<td>matrix metalloproteinase 19</td>
</tr>
<tr>
<td>Mmp2</td>
<td>NM_00103054</td>
<td>matrix metalloproteinase 2</td>
</tr>
<tr>
<td>Nid2</td>
<td>NM_00102006</td>
<td>nidogen 2</td>
</tr>
<tr>
<td>Ntn1</td>
<td>NM_053731</td>
<td>netrin 1</td>
</tr>
<tr>
<td>Pld1</td>
<td>NM_053827</td>
<td>procollagen-lysine, 1, 2-oxoglutarate 5-dioxygenase 1</td>
</tr>
<tr>
<td>Podc1</td>
<td>ENSRNOT00000037453</td>
<td>podocan-like 1</td>
</tr>
<tr>
<td>Prgc4</td>
<td>NM_00105962</td>
<td>proteoglycan 4, (megakaryocyte stimulating factor syndrome)</td>
</tr>
<tr>
<td>Sema3a</td>
<td>NM_017310</td>
<td>short basic domain, secreted, (semaphorin) 3A</td>
</tr>
<tr>
<td>Sema3c</td>
<td>NM_00106578</td>
<td>short basic domain, secreted, (semaphorin) 3C</td>
</tr>
<tr>
<td>Sema3e</td>
<td>NM_00106579</td>
<td>short basic domain, secreted, (semaphorin) 3E</td>
</tr>
<tr>
<td>Serpinb7</td>
<td>NM_130404</td>
<td>serine (or cysteine) peptidase inhibitor, clade B, member 7</td>
</tr>
<tr>
<td>Serpine2</td>
<td>NM_019197</td>
<td>serine (or cysteine) peptidase inhibitor, clade E, member 2</td>
</tr>
<tr>
<td>Serping1</td>
<td>NM_199093</td>
<td>serine (or cysteine) peptidase inhibitor, clade G, member 1</td>
</tr>
<tr>
<td>Serpin1</td>
<td>NM_053779</td>
<td>serine (or cysteine) peptidase inhibitor, clade I, member 1</td>
</tr>
<tr>
<td>Sfrp2</td>
<td>NM_00100700</td>
<td>secreted frizzled-related protein 2</td>
</tr>
<tr>
<td>Sfrp4</td>
<td>NM_053544</td>
<td>secreted frizzled-related protein 4</td>
</tr>
<tr>
<td>Slpia</td>
<td>NM_053372</td>
<td>secretory leukocyte peptidase inhibitor</td>
</tr>
<tr>
<td>Srpx</td>
<td>NM_022524</td>
<td>sushi-repeat-containing protein, X-linked</td>
</tr>
<tr>
<td>Sv2a</td>
<td>NM_057210</td>
<td>synaptotagmin-like protein 2a</td>
</tr>
<tr>
<td>Tgfα</td>
<td>NM_012671</td>
<td>transforming growth factor alpha</td>
</tr>
<tr>
<td>Timp1</td>
<td>NM_053919</td>
<td>TIMP metalloproteinase inhibitor 1</td>
</tr>
<tr>
<td>Tn</td>
<td>NM_00107189</td>
<td>tenascin N</td>
</tr>
<tr>
<td>Vcan</td>
<td>AF072892</td>
<td>versican</td>
</tr>
<tr>
<td>Vwa5a</td>
<td>NM_198755</td>
<td>von Willebrand factor A domain containing 5A</td>
</tr>
</tbody>
</table>
Supplemental Table 10: ECM-associated Downregulated Genes In PTEN-Deficient SMCs

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Accession</th>
<th>Gene Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamts12</td>
<td>NM_001106420</td>
<td>ADAM metalloproteinase with thrombospondin type 1 motif 12</td>
</tr>
<tr>
<td>Adamts9</td>
<td>NM_001107877</td>
<td>ADAM metalloproteinase with thrombospondin type 1 motif 9</td>
</tr>
<tr>
<td>Angpl2</td>
<td>NM_133569</td>
<td>angiopoietin-like 2</td>
</tr>
<tr>
<td>Annexin A8</td>
<td>NM_001031654</td>
<td>annexin A8</td>
</tr>
<tr>
<td>Asporin</td>
<td>NM_001014008</td>
<td>asporin</td>
</tr>
<tr>
<td>Bmp3</td>
<td>NM_017105</td>
<td>bone morphogenic protein 3</td>
</tr>
<tr>
<td>Bmp4</td>
<td>NM_012827</td>
<td>bone morphogenic protein 4</td>
</tr>
<tr>
<td>Bmp6</td>
<td>NM_013107</td>
<td>bone morphogenic protein 6</td>
</tr>
<tr>
<td>Btc</td>
<td>NM_022256</td>
<td>betacellulin</td>
</tr>
<tr>
<td>Cav1</td>
<td>NM_031556</td>
<td>caveolin 1, caveolae protein</td>
</tr>
<tr>
<td>Cav2</td>
<td>NM_131914</td>
<td>caveolin 2</td>
</tr>
<tr>
<td>Col11a1</td>
<td>ENSRNOT0000024138</td>
<td>collagen, type XI, alpha 1</td>
</tr>
<tr>
<td>Col4a5</td>
<td>ENSRNOT0000025567</td>
<td>collagen, type IV, alpha 5</td>
</tr>
<tr>
<td>Crspla2</td>
<td>NM_136518</td>
<td>cysteine-rich secretory protein LCCL domain containing 2</td>
</tr>
<tr>
<td>Ctgf</td>
<td>NM_022266</td>
<td>connective tissue growth factor</td>
</tr>
<tr>
<td>E2F5</td>
<td>ENSRNOT00000014361</td>
<td>E2F transcription factor 5</td>
</tr>
<tr>
<td>Elastin</td>
<td>NM_012722</td>
<td>elastin</td>
</tr>
<tr>
<td>Erbb4</td>
<td>NM_021889</td>
<td>erbbatin</td>
</tr>
<tr>
<td>Fbln2</td>
<td>ENSRNOT0000009696</td>
<td>fibulin 2</td>
</tr>
<tr>
<td>Fbln5</td>
<td>NM_019153</td>
<td>fibulin 5</td>
</tr>
<tr>
<td>Fmod1</td>
<td>NM_080698</td>
<td>fibromodulin</td>
</tr>
<tr>
<td>Frms1</td>
<td>ENSRNOT0000022814</td>
<td>Fraser extracellular matrix complex subunit 1</td>
</tr>
<tr>
<td>Gdf6</td>
<td>NM_001013038</td>
<td>growth differentiation factor 6</td>
</tr>
<tr>
<td>Gpc4</td>
<td>NM_001014108</td>
<td>glypicanc 4</td>
</tr>
<tr>
<td>Hmnc1</td>
<td>ENSRNOT00000030951</td>
<td>hemicentin 1</td>
</tr>
<tr>
<td>Hmnr</td>
<td>NM_012864</td>
<td>hyaluronan mediated motility receptor (RHAMM)</td>
</tr>
<tr>
<td>Hs681</td>
<td>NM_001108210</td>
<td>heparan sulfate 6-O-sulfotransferase 1</td>
</tr>
<tr>
<td>Id2</td>
<td>NM_013060</td>
<td>inhibitor of DNA binding 2</td>
</tr>
<tr>
<td>Ilga1</td>
<td>NM_030949</td>
<td>integrin alpha 1</td>
</tr>
<tr>
<td>Ilga11</td>
<td>NM_00108156</td>
<td>integrin alpha 11</td>
</tr>
<tr>
<td>Ilga12</td>
<td>NM_00107737</td>
<td>integrin alpha 4</td>
</tr>
<tr>
<td>Ilga6</td>
<td>ENSRNOT0000045394</td>
<td>integrin, alpha 6</td>
</tr>
<tr>
<td>Matn2</td>
<td>ENSRNOT0000008361</td>
<td>matrin 2</td>
</tr>
<tr>
<td>Megf9</td>
<td>NM_001107940</td>
<td>multiple EGF-like-domain 9</td>
</tr>
<tr>
<td>Mftp4</td>
<td>NM_001034124</td>
<td>microfibrillar-associated protein 4</td>
</tr>
<tr>
<td>Mftp5</td>
<td>NM_001108844</td>
<td>microfibrillar associated protein 5</td>
</tr>
<tr>
<td>Mmp28</td>
<td>NM_001079888</td>
<td>matrix metalloproteinase 28 (epithelial)</td>
</tr>
<tr>
<td>Ngf1</td>
<td>NM_031588</td>
<td>neuregulin 1</td>
</tr>
<tr>
<td>Omd</td>
<td>NM_031817</td>
<td>osteomodulin</td>
</tr>
<tr>
<td>Pdha3</td>
<td>NM_198775</td>
<td>procollagen-proline 4-hydroxyproline alpha polypeptide 3</td>
</tr>
<tr>
<td>Perea6</td>
<td>ENSRNOT00000054793</td>
<td>peptidase convertase subtilisin/kexin type 5</td>
</tr>
<tr>
<td>Pdgfra</td>
<td>NM_023962</td>
<td>platelet-derived growth factor D polypeptide</td>
</tr>
<tr>
<td>Pik3ca1</td>
<td>NM_001017453</td>
<td>phosphoinositide-3-kinase interacting protein 1</td>
</tr>
<tr>
<td>PlxnA2</td>
<td>NM_001105968</td>
<td>pleelin A2</td>
</tr>
<tr>
<td>Pxdn</td>
<td>ENSRNOT00000060139</td>
<td>peroxidasin homolog (Drosophila)</td>
</tr>
<tr>
<td>St10a10</td>
<td>NM_031114</td>
<td>S100 calcium binding protein A10</td>
</tr>
<tr>
<td>Sfrp1</td>
<td>ENSRNOT0000024128</td>
<td>secreted frizzled-related protein 1</td>
</tr>
<tr>
<td>Shh</td>
<td>NM_031321</td>
<td>slit homolog 3 (Drosophila)</td>
</tr>
<tr>
<td>Smad6</td>
<td>NM_001109002</td>
<td>SMAD family member 6</td>
</tr>
<tr>
<td>Smad7</td>
<td>NM_030858</td>
<td>SMAD family member 7</td>
</tr>
<tr>
<td>Smac1</td>
<td>NM_001002935</td>
<td>SPARC related modular calcium binding 1</td>
</tr>
<tr>
<td>Smurf2</td>
<td>NM_001107061</td>
<td>SMAD specific E3 ubiquitin protein ligase 2</td>
</tr>
<tr>
<td>Spon1</td>
<td>NM_172867</td>
<td>spondin 1, extracellular matrix protein</td>
</tr>
<tr>
<td>Tng1</td>
<td>NM_003588</td>
<td>tubulointestinal nephritis antigen 1</td>
</tr>
<tr>
<td>Tll1</td>
<td>NM_001109061</td>
<td>toll-like 1</td>
</tr>
<tr>
<td>Wisp2</td>
<td>NM_031590</td>
<td>WNT1 inducible signaling pathway protein 2</td>
</tr>
</tbody>
</table>
Supplemental Table 11: Cytokine and ECM-associated Genes Upregulated 1.8-2.0-fold in PTEN-Deficient SMCs

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Accession</th>
<th>Gene Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams6</td>
<td>NM_001103544</td>
<td>ADAM metallopeptidase with thrombospondin type 1 motif, 6</td>
</tr>
<tr>
<td>Angptl4</td>
<td>NM_199115</td>
<td>angiopoietin-like 4</td>
</tr>
<tr>
<td>Ccr1</td>
<td>NM_020542</td>
<td>chemokine (C-C motif) receptor 1</td>
</tr>
<tr>
<td>Col6a2</td>
<td>ENSRNOT0000001695</td>
<td>collagen, type VI, alpha 2</td>
</tr>
<tr>
<td>Ctsb</td>
<td>NM_022597</td>
<td>cathepsin B</td>
</tr>
<tr>
<td>Cxcl12</td>
<td>NM_001033883</td>
<td>chemokine (C-X-C motif) ligand 12</td>
</tr>
<tr>
<td>Efemp2</td>
<td>NM_001005907</td>
<td>EGF-containing fibulin-like extracellular matrix protein 2</td>
</tr>
<tr>
<td>Foxo3</td>
<td>NM_001106395</td>
<td>forkhead box O3</td>
</tr>
<tr>
<td>Gdf15</td>
<td>NM_019216</td>
<td>growth differentiation factor 15</td>
</tr>
<tr>
<td>Gnb4</td>
<td>NM_001013910</td>
<td>guanine nucleotide binding protein, beta polypeptide 4</td>
</tr>
<tr>
<td>Hif1a</td>
<td>NM_024359</td>
<td>hypoxia-inducible factor 1, alpha subunit</td>
</tr>
<tr>
<td>Ilf7b</td>
<td>ENSRNOT00000026679</td>
<td>interleukin 17B</td>
</tr>
<tr>
<td>Il33</td>
<td>NM_001025766</td>
<td>interleukin 34</td>
</tr>
<tr>
<td>Il4ra</td>
<td>NM_133380</td>
<td>interleukin 4 receptor, alpha</td>
</tr>
<tr>
<td>Itga3</td>
<td>NM_001108292</td>
<td>integrin alpha 3</td>
</tr>
<tr>
<td>Itgb5</td>
<td>NM_147139</td>
<td>integrin, beta 5</td>
</tr>
<tr>
<td>Kng1</td>
<td>NM_012696</td>
<td>kininogen 1</td>
</tr>
<tr>
<td>Lama2</td>
<td>ENSRNOT00000014917</td>
<td>laminin, alpha 2</td>
</tr>
<tr>
<td>Lamb1</td>
<td>NM_001106721</td>
<td>laminin, beta 1</td>
</tr>
<tr>
<td>Lamb3</td>
<td>ENSRNOT00000008440</td>
<td>laminin, beta 3</td>
</tr>
<tr>
<td>Loxl3</td>
<td>NM_001107866</td>
<td>lysyl oxidase-like 3</td>
</tr>
<tr>
<td>Pik3r1</td>
<td>NM_013005</td>
<td>phosphoinositide-3-kinase, regulatory subunit 1 (alpha)</td>
</tr>
<tr>
<td>Slit2</td>
<td>AF141386</td>
<td>slit homolog 2 (Drosophila)</td>
</tr>
<tr>
<td>Tgfb1</td>
<td>NM_021578</td>
<td>transforming growth factor, beta 1</td>
</tr>
<tr>
<td>Tgm2</td>
<td>NM_019386</td>
<td>transglutaminase 2, C polypeptide</td>
</tr>
<tr>
<td>Thbs2</td>
<td>ENSRNOT00000014552</td>
<td>thrombospondin 2</td>
</tr>
<tr>
<td>Tnfrsf10b</td>
<td>NM_001108873</td>
<td>tumor necrosis factor receptor superfamily, member 10b</td>
</tr>
</tbody>
</table>