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Late allograft failure is characterized by cumulative subclinical insults manifesting over
many years. Although immunomodulatory therapies targeting host T cells have improved
short-term survival rates, rates of chronic allograft loss remain high. We hypothesized that
other immune cell types may drive subclinical injury, ultimately leading to graft failure. We
collected whole-genome transcriptome profiles from 15 independent cohorts composed of
1,697 biopsy samples to assess the association of an inflammatory macrophage
polarization–specific gene signature with subclinical injury. We applied penalized
regression to a subset of the data sets and identified a 3-gene inflammatory macrophage–
derived signature. We validated discriminatory power of the 3-gene signature in 3
independent renal transplant data sets with mean AUC of 0.91. In a longitudinal cohort, the
3-gene signature strongly correlated with extent of injury and accurately predicted
progression of subclinical injury 18 months before clinical manifestation. The 3-gene
signature also stratified patients at high risk of graft failure as soon as 15 days after biopsy.
We found that the 3-gene signature also distinguished acute rejection (AR) accurately in 3
heart transplant data sets but not in lung transplant. Overall, we identified a parsimonious
signature capable of diagnosing AR, recognizing subclinical injury, and risk-stratifying renal
transplant patients. Our results strongly suggest that inflammatory macrophages may be a
viable therapeutic target to improve long-term outcomes for organ transplantation patients.
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Introduction
Diverse subclinical graft injury processes, taking place over many years, result in chronic allograft failure 
(1, 2). Although immunosuppressive drugs have reduced acute rejection (AR) and improved 1-year survival 
rates in solid organ transplant, long-term graft failure rates remain stubbornly high (3). This observation 
strongly suggests the existence of  additional allograft injury mechanisms that have not yet been identified. 
This incomplete understanding of  graft failure pathophysiology limits the development of  new treatments 
that may enable long-term transplant success (4). Further, the development of  effective treatments is hin-
dered because of  a lack of  early markers of  graft injury and failure, which requires that patients must be 
followed long term to understand whether a new treatment is effective. In addition, a suitable biomarker 
for immune-mediated graft damage would help in identifying appropriate treatments on a patient basis.

Previous reports have implicated distinct gene expression patterns in acute cellular rejection (ACR) and 
antibody-mediated rejection (AMR) (5, 6). In contrast, using a multicohort analysis (7–9) of  13 indepen-
dent data sets consisting of  1,164 graft biopsies from 4 transplanted organs, we identified and validated a 
common rejection module (CRM) consisting of  11 genes, which (a) is able to diagnose AR, (b) correlates 
with the extent of  graft injury, and (c) predicts subclinical graft injury (7). We also demonstrated that 
the CRM is mechanistically involved in graft injury by identifying two FDA-approved drugs that reduced 
graft-infiltrating immune cells and extended graft survival in a mouse model of  cardiac transplantation and 
electronic health records of  renal transplant patients (7). Collectively, these results suggest the possibility of  
a gene signature common to both ACR and AMR (10–12).

Late allograft failure is characterized by cumulative subclinical insults manifesting over many 
years. Although immunomodulatory therapies targeting host T cells have improved short-term 
survival rates, rates of chronic allograft loss remain high. We hypothesized that other immune 
cell types may drive subclinical injury, ultimately leading to graft failure. We collected whole-
genome transcriptome profiles from 15 independent cohorts composed of 1,697 biopsy samples 
to assess the association of an inflammatory macrophage polarization–specific gene signature 
with subclinical injury. We applied penalized regression to a subset of the data sets and identified 
a 3-gene inflammatory macrophage–derived signature. We validated discriminatory power of 
the 3-gene signature in 3 independent renal transplant data sets with mean AUC of 0.91. In a 
longitudinal cohort, the 3-gene signature strongly correlated with extent of injury and accurately 
predicted progression of subclinical injury 18 months before clinical manifestation. The 3-gene 
signature also stratified patients at high risk of graft failure as soon as 15 days after biopsy. We 
found that the 3-gene signature also distinguished acute rejection (AR) accurately in 3 heart 
transplant data sets but not in lung transplant. Overall, we identified a parsimonious signature 
capable of diagnosing AR, recognizing subclinical injury, and risk-stratifying renal transplant 
patients. Our results strongly suggest that inflammatory macrophages may be a viable therapeutic 
target to improve long-term outcomes for organ transplantation patients.
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Macrophage infiltration has been implicated in both AR (13) and chronic graft failure (10, 11), yet a 
precise role for this cell type in organ transplantation remains unclear (12). Macrophages take on diverse 
phenotypic states in response to environmental stimuli, with activation characterized by a spectrum of  
transcriptional reprogramming (14), ranging from an antiinflammatory phenotype in the presence of  
IL-4 or IL-10 to a proinflammatory phenotype in the presence of  IFN-γ, referred to as M(IL-4), M(IL-
10), and M(IFN-γ), respectively (15). Several studies have described transcriptional signatures associated 
with each of  these activation states (14, 16). Here, we hypothesized that inflammatory macrophages, 
M(IFN-γ), may explain substantial part of  the unidentified allograft injury mechanisms that are common 
to both ACR and AMR and could identify early biomarkers of  graft injury and failure. We correlated 
literature-derived gene signatures for M(IFN-γ), M(IL-4), and M(IL-10) with the CRM. We found that 
M(IFN-γ) was highly correlated with the CRM across multiple independent renal transplant cohorts, 
whereas M(IL-4) and M(IL-10) showed moderate correlations. We identified a 3-gene signature as a 
subset of  the M(IFN-γ) that accurately diagnosed subclinical and acute renal graft injury, correlated with 
the extent of  graft injury, and predicted progressive graft injury and failure. We validated the signature 
in 3 independent cohorts of  renal graft biopsies using RT-PCR and microarrays. Using 4 additional data 
sets, we extended our analysis to show that the 3-gene signature accurately distinguished AR samples in 
cardiac transplant but had lower accuracy in lung transplant. Our results strongly suggest an important 
role for inflammatory macrophages in early graft injury that leads to graft failure.

Results
Systematic search and preprocessing of  allograft transcriptomes. We conducted a systematic search of  the NIH 
Gene Expression Omnibus (GEO) to collect all available clinical transplant biopsy data sets. We identified 
15 data sets matching the search criteria (for-cause or protocol biopsies obtained from organ transplant 
patients). The data sets comprised 1,697 biopsy samples from renal (11 data sets, 1,571 samples), cardiac 
(3 data sets, 94 samples), and lung transplants (1 data set, 32 samples; Table 1). Four of  these data sets 
included only protocol biopsies (7, 17–20), six included only for-cause biopsies (21–26), and five included 
both protocol and for-cause biopsies (7, 27–29). We curated each data set to identify allograft biopsies from 
AR and stable (STA) patients. We removed biopsy samples corresponding to healthy controls from further 
analysis, as they were not biopsied for a clinical indication. For each study, we used the sample phenotypes 
as defined by the corresponding published study (see Table 1; for further details see Supplemental Table 1; 
supplemental material available online with this article; https://doi.org/10.1172/jci.insight.95659DS1).

All renal transplant data sets, except GSE48581, were phenotypically defined using the Banff  criteria 
available at the time of  the study. GSE48581 was classified using the Alberta Transplant Applied Genomics 
Center Reference Standard Classification. All heart transplant biopsies were graded according to Inter-
national Society for Heart & Lung Transplantation (ISHLT) criteria, where samples with ISHLT grade 0 
were used as STA samples and those with grade 3A or higher were used as AR samples (29, 30). GSE6095 
used bronchoalveolar lavage (BAL) samples that were selected to maximize potential differences in gene 
expression between AR and STA samples and to minimize bias from confounding factors as described 
previously (28). We divided the data sets in discovery and validation cohorts. As discovery cohorts, we 
selected 8 renal transplant data sets that were publicly available in GEO before October 2013. Although 
GSE25902 was publicly available prior to October 2013, we used it as a validation cohort because it was the 
only longitudinal data set. We used all renal transplant data sets published after October 2013 (GSE53605 
and GSE76882). Finally, we used other cardiac and lung transplant data sets to extend our findings from 
renal transplant biopsies to other solid organ transplants.

Higher ratio of  proinflammatory macrophage scores to antiinflammatory macrophage scores is associated 
with higher risk of  rejection. We hypothesized that macrophage polarization plays an important role in 
graft injury and expression of  proinflammatory macrophage polarization signature will be correlated 
with that of  the CRM. To test this hypothesis, we used previously described macrophage polarization 
signatures in presence of  IFN-γ, IL-4, and IL-10 (16, 31), from which we removed all overlapping 
genes with the CRM. We defined the M(IFN-γ) score, M(IL-4) score, and M(IL-10) score as the geo-
metric mean of  the corresponding signature genes in a sample. We found that, across 10 independent 
data sets of  1,499 renal graft biopsies, M(IFN-γ) scores were highly correlated with the CRM scores (r 
= 0.95, P < 2.2 × 10–16, whereas M(IL-4) and M(IL-10) scores had moderate correlations (r = 0.77 and 
0.64, respectively, P < 2.2 × 10–16; Supplemental Figure 1).
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Table 1. Publicly available organ transplant data sets

GSE Author, 
ref.

Transplanted 
organ

Phenotypes (no. of samples) No. of 
AR

No. of STA No. of 
RD

For-cause or 
protocol?

Date publicly 
available 

(month-YY)

Platform

Discovery data sets
GSE1563 Flechner 

et al. 
(20)

Kidney AR (5), STA (10), ATN (2), 
borderline (2), CNIT (2), FSGS 

(1) 

5 10 7 Protocol July-04 GPL96

GSE21374 Einecke 
et al. 
(25)

Kidney AR (76), STA (206) 76 206 0 Cause May-10 GPL570

GSE36059 Reeve et 
al. (24)

Kidney AMR (65), ACR (35), mixed (22), 
STA (281)

122 281 0 Cause February-13 GPL570

GSE50058 Khatri et 
al. (7)

Kidney AR (43), STA (58) 43 58 0 Mixed October-13 GPL570

GSE9493 Rödder 
et al. 
(26)

Kidney AR (10), AR+CAN (7), CAN (25), 
borderline (4), STA (21)

17 25 0 Cause February-09 GPL570

GSE47097 Rekers 
et al. 
(23)

Kidney AR (36), STA (4) 36 4 0 Cause May-13 GPL6883

GSE48581 Halloran 
et al. 
(22)

Kidney STA (222), AMR (40), TCMR 
(32), mixed (6)

78 222 0 Cause September-13 GPL570

GSE50084 Ó Broin 
et al. 
(21)

Kidney AR (28), STA (33) 28 33 0 Cause August-13 GPL6244

Validation data sets
GSE25902 Naesens 

et al. 
(19)

Kidney – – – 72 Protocol December-11 GPL570

GSE53605 Maluf et 
al. (17)

Kidney AR (13), STA (18), CNIT (14), IF/
TA (10)

13 18 24 Protocol June-14 GPL571

GSE76882 Modena 
et al. 
(39)

Kidney AR (54), ADNR (40), IF/TA (71), 
IF/TA+I (10), IF/TA+AR (29), 

STA (99)

54 99 40 Mixed (114 
surveillance, 

120 for-cause)

January-16 GPL13158

GSE2596 Morgun 
et al. 
(29)

Heart AR (16), Pre-AR (4), STA (27), 
Pre-Chagas (7), Chagas (8)

16 27 0 Mixed 
(monitoring 

for 6 months, 
additional 

were taken if 
rejection was 

suspected)

October-05 GPL1053

GSE4470 Morgun 
et al. 
(29)

Heart AR (12), STA (13), Pre-AR (2) 12 13 0 Mixed 
(monitoring 

for 6 months, 
additional 

were taken if 
rejection was 

suspected)

March-06 GPL1053

GSE9377 Holweg 
et al. 
(30)

Heart AR (7), STA (19) 7 19 0 Protocol October-08 GPL887

GSE6095 Patil et 
al. (28)

Lung AR (18), STA (14) 18 14 0 Mixed (22 
surveillance, 
10 clinically 
indicated)

January-08 GPL96

ACR, acute cellular rejection; ADNR, acute dysfunction with no rejection; AMR, antibody-mediated rejection; AR, acute rejection; ATN, acute tubular 
necrosis; CAN, chronic allograft nephropathy; CNIT, calcineurin inhibitor toxicity; FSGS, focal segmental glomerulosclerosis; IF/TA, interstitial fibrosis/
tubular atrophy; IF/TA+I, interstitial fibrosis/tubular atrophy plus inflammation; STA, stable; TCMR, T cell–mediated rejection.
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Next, we performed a linear regression analysis with M(IFN-γ) score, M(IL-4) score, and M(IL-10) 
scores as independent predictors of  the CRM score to investigate which of  them explained more variance 
in the CRM score than the others. We found that these scores collectively explained 90% of  variance in the 
CRM scores, of  which the M(IFN-γ) score explained 60% (P < 2.2 × 10–16) of  variance; this was more than 
twice the amount of  variance explained by the M(IL-4) score (24%; P < 2.2 × 10–16) and almost 4 times the 
amount of  variance explained by the M(IL-10) score (15.65%; P < 2.2 × 10–16).

It is possible that as the recipient immune system mounts response to the graft, the graft itself  secretes 
antiinflammatory signals, indicating that both proinflammatory and antiinflammatory signals will be pres-
ent in a transplant patient with AR. Therefore, we hypothesized that the patients with high proinflamma-
tory macrophage scores compared with antiinflammatory macrophage scores will be at a higher risk of  
rejection. We performed a logistic regression analysis using the ratio of  M(IFN-γ) score to M(IL-4) score as 
a predictor of  AR. We found that higher ratio is associated with the higher risk of  rejection (log likelihood 
of  AR = 0.7; P = 2.86 × 10–10).

Collectively, these results demonstrate that proinflammatory macrophage polarization is strongly cor-
related with the CRM and explain the large amount of  variance in the CRM. Our analysis further demon-
strates that an increase in the ratio of  proinflammatory to antiinflammatory macrophage in the graft signifi-
cantly increases the risk of  rejection.

Identification of  a parsimonious proinflammatory macrophage gene signature. Our correlation analysis of  the 
25 M(IFN-γ)–stimulated macrophage polarization signature genes across 104 diseases using the MetaSigna-
ture database (8) showed that these genes are substantially correlated with each other (Supplemental Figure 
2A), suggesting that the M(IFN-γ) signature could be further reduced. Therefore, we sought to identify a 
parsimonious M1 gene signature that can distinguish AR and STA allograft biopsies. We used a generalized 
linear regression model using the 25-gene M(IFN-γ) signature with binary classification of  AR versus STA to 
identify a subset of  these genes that was most discriminative in the discovery cohorts (Table 1). We identified 
3 genes that were selected in the regression model in at least 4 of  8 discovery data sets (Supplemental Table 
2): CXCL11, CCL19, and CD86. As expected, these genes were consistently expressed at a higher level in AR 
patient renal graft biopsies than in those of  STA patients in the discovery cohorts (Figure 1). Importantly, 
despite the biological and technical heterogeneity in the discovery cohorts, there was little or no heterogeneity 
in these 3 genes. Finally, we found that across 25 immune cell types and epithelial cells, individually, each 
of  the 3 genes was expressed in multiple cell types. CD86 was expressed at similar levels in multiple myeloid 
cell types, whereas CXCL11 and CCL19 were highly expressed in inflammatory macrophages compared with 
other cell types (Supplemental Figure 2B). Similar to a previous report (5), we observed that CXCL11 was also 
expressed in endothelial cells but at a substantially lower level than inflammatory macrophages. Importantly, 
we found that as a signature, these 3 genes are collectively enriched in inflammatory macrophages (P = 4.87 

Figure 1. Three inflammatory macrophage polarization genes are overexpressed in AR patients across all renal transplant discovery cohorts. The x axis 
represents the standardized mean difference between AR and STA, computed as Hedges’ g. The rectangle size is proportional to the standard error of the 
mean in the study. Whiskers denote 95% CI. Diamonds, overall, represent the combined mean difference for a given gene. Diamond width denotes 95% CI 
of overall mean difference.
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× 10–6, FDR = 0.013%; Supplemental Figure 2C). These results suggest that, although each of  the 3 genes 
may be expressed in multiple cell types, only inflammatory macrophages predominantly expressed all 3 genes 
together and at significantly higher levels than the other cell types.

Validation of  the 3-gene signature using microarrays and RT-qPCR. We defined the geometric mean of  the 
expression of  the 3 genes in the graft biopsy as the M1 score of  an allograft biopsy. As expected, in the 8 dis-
covery cohorts, the M1 score distinguished AR samples from STA samples with high accuracy (mean AUC 
= 0.79, range: 0.57–0.89; Figure 2A). In the 2 independent renal transplant data sets, which contained pro-
tocol and for-cause biopsies, M1 scores were higher in the AR group (Wilcox test P = 6.6 × 10–7 and P = 6.2 
× 10–16 for GSE53605 and GSE76882, respectively; Supplemental Figure 3) and had AUC of  0.94 and 0.9 
for GSE53605 and GSE76882, respectively (Figure 2B). Further, logistic regression using M1 score as an 
independent variable showed that each unit increase in the M1 score increased the odds of  AR by 23- and 
10-fold in GSE53605 and GSE76882, respectively. Maximized for sensitivity, the test characteristics across 
the validation data sets were (32) sensitivity = 95% and specificity = 63% for AR versus STA. Assuming 
15% prevalence of  AR, the corresponding negative predictive value is 99%.

Next, we explored whether M1 score performed differently in ACR and AMR. Two independent data 
sets, GSE36059 and GSE48581, identified whether a patient had AMR, ACR, or mixed (AMR and ACR) 
rejection. In both studies, we found that the M1 scores were higher in ACR (P = 3.35 × 10–20) and AMR (P 
= 4.13 × 10–17) than in STA patients (Supplemental Figure 4). Further, the M1 scores were higher in ACR 
and mixed rejection patients than in AMR patients.

Further, we measured the expression of  these 3 genes using RT-qPCR in an independent cohort of  22 
renal graft biopsies, consisting in 11 AR and 11 STA adult patients. The cohort was matched for age, serum 
creatinine, eGFR, and time after transplant (Table 2). Each of  the genes was overexpressed during AR in 
this cohort (Supplemental Figure 5). Importantly, the M1 score also distinguished AR samples from STA 
samples with high accuracy (AUC = 0.89; Figure 2B) in this cohort, demonstrating its robustness to the 
technological platform used for measuring the 3-gene signature.

Finally, because the M(IFN-γ) score was highly correlated with the CRM score, which in turn is com-
mon across organ transplant rejections, we attempted to see if  the 3-gene signature could also distinguish 
AR and STA samples in other organ transplants. We found that the M1 score distinguished AR from STA 
samples with high accuracy in 3 heart transplant data sets (mean AUC = 0.92, range: 0.88–0.97, Figure 
2C; see Table 1 for details of  the data sets) but with moderate accuracy in lung transplants (AUC = 0.68; 
Supplemental Figure 6). Collectively, these results suggest that, unlike the CRM score, the M1 score can 
distinguish AR and STA samples in renal and cardiac transplants but not across all solid organ transplants.

Intragraft M1 score is an early prognostic marker of  subclinical allograft injury and graft failure. Next, we inves-
tigated whether the M1 score could also identify chronic histological damage in renal allografts, as defined 
by the chronic allograft damage index (CADI) (2). We used a longitudinal cohort of  renal allograft biopsies 
(GSE25902, ref. 19) (Supplemental Figure 7); this cohort is referred to as the “longitudinal cohort” herein. 
None of  the patients in the longitudinal cohort experienced Banff-grade acute T cell–mediated rejection 
within 2 years of  transplantation. At 24 months after transplant, 12 of  the 24 patients had greater histolog-
ical progression, scored by the incremental CADI score. We defined these samples as progressors, and the 
remaining samples as nonprogressors. The M1 scores for the nonprogressor, progressor, and AR groups in 
the 72 patients were positively correlated with the extent of  injury (Jonckheere-Terpstra trend test [JT], ref. 
33, P = 0.005; Figure 3A). The M1 score was also positively correlated with different components of  the 
Banff  score (JT P < 1 × 10–6; Figure 3, B–E) in the longitudinal cohort, demonstrating that the M1 score 
correlates with various aspects of  subclinical injury.

A repeated-measures analysis of  variance of  the longitudinal cohort showed that the M1 scores differed 
between the progressor and nonprogressor groups (P = 3.76 × 10–5, Figure 3F), where M1 scores increased 
over time for both groups (P = 2.54 × 10–7). Importantly, as time after transplant increased, the M1 scores for 
the progressor group increased at a faster rate compared with those for the nonprogressor group (P = 0.017). 
Interestingly, the M1 scores of  nonprogressors were highly similar to those of  STA groups (Figure 3F). There-
fore, we asked if  the M1 score for a 6-month protocol biopsy could predict future histological damage to the 
graft, as defined by CADI score at 24 months after transplant. M(IFN-γ) scores in 6-month biopsies predicted 
histological damage with 91.6% sensitivity and 83% specificity (AUC = 0.91; Figure 3G).

Finally, we explored whether the M1 score was associated with graft survival. In GSE21374, where 
time-to-event data was available, we divided renal allografts into two groups based on mean of  M1 score: 
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high M1 score, which included samples with M1 score greater than the mean M1 score, and low M1 
score, which included samples with M1 score less than or equal to the mean M1 score. Cox proportional 
hazard analysis showed that graft survival was higher in the low M1 group (hazard ratio = 2.79, 95% CI: 
1.56–5.01, P = 5.5 × 10–4, Figure 4). When we corrected for time since transplant to account for ongoing 
subclinical graft injury, the hazard ratio for graft failure increased to 3.24 (95% CI: 1.8 – 5.8, P = 9 × 10–5).

Discussion
Long-term graft failure rates continue to be unacceptably high despite the development of  immunosuppres-
sive drugs, underscoring the unmet need for robust prognostic biomarkers of  allograft injury and failure. 
Here, we hypothesized that an inflammatory macrophage–specific gene signature would identify robust 
diagnostic and prognostic signatures of  graft injury and failure. Despite the biological and technical hetero-
geneity in existing data sets, we identified a parsimonious 3-gene signature enriched in inflammatory mac-
rophages that is (a) highly correlated to the common rejection module across all solid organ transplants, (b) 
overexpressed during AR, (c) correlated with the extent of  graft injury as defined by Banff  and CADI, and 
(d) able to identify allografts at the risk of  failure irrespective of  time after transplant.

We found a near-perfect correlation between the inflammatory macrophage, M(IFN-γ), gene signature 
and the CRM signature (7) in renal transplants that was substantially higher than that of  the antiinflamma-
tory macrophage, M(IL-4) or M(IL-10), gene signatures. This result suggests innate and adaptive immune 
responses functioning in tandem in renal and heart transplants. Further, our analysis found that 60% of  
the variance observed in the CRM is explained by M(IFN-γ), and the ratio of  M(IFN-γ) score to that of  
antiinflammatory macrophage polarization scores, M(IL-4) and M(IL-10), is positively associated with 
increased AR risk. However, the 3-gene set is different from the 11-gene CRM. A predominant source of  
the 3-gene set is enriched for innate immune response, M(IFN-γ), macrophages, whereas the CRM score 
largely reflects the adaptive immune response, with many of  the 11 genes in the CRM highly expressed in T 
cells, including LCK, CD6, CD7, and NKG7. Collectively, this result suggests that dysregulation of  balance 
in the innate immune system between proinflammatory and antiinflammatory macrophage polarization 
may result in AR and subclinical chronic allograft injury through the adaptive immune system, which 
may be difficult to detect in protocol biopsies. AR itself  may be cell mediated (ACR) or antibody mediated 
(AMR). Compared with STA biopsies, we found that the M(IFN-γ) score was higher in both ACR and 
AMR, suggesting that inflammatory macrophages contribute to both types of  AR.

Other groups have investigated intragraft macrophages, though many investigations have focused on 
murine models of  cardiac transplantation (34–36). Wu et al. interrogated macrophage polarization in 
transplant rejection (35) and found that graft-infiltrating macrophages in a murine model of  chronic car-
diac transplant rejection demonstrated an M2 (IL-4) phenotype; they reported that blocking the recep-

Figure 2. Three-gene M1 score can distinguish AR and STA samples with high accuracy in renal transplant patients. The 3-gene M1 score can distinguish 
AR and STA samples with high accuracy in renal transplant patients in (A) 8 discovery cohorts of 1,251 renal transplant biopsies, (B) 3 validation cohorts of 
270 renal allograft biopsies, and (C) 3 validation cohorts of 94 heart allograft biopsies. The PCR cohort represents 22 renal allograft biopsy samples that 
profiled the M1 genes using RT-PCR; the other 2 validation cohorts were publicly available after October 2013.



7insight.jci.org      https://doi.org/10.1172/jci.insight.95659

R E S E A R C H  A R T I C L E

tor P2X7, which may be upregulated in M2 macrophages, improved long-term cardiac allograft survival. 
This group also provided evidence that mTOR deletion both suppresses M2 polarization and may prevent 
chronic rejection. An important limitation of  the initial study is the use of  single markers of  polarization 
state (iNOS, M1, and CD206, M2), contrary to current experimental guidelines (15). Studies of  acute 
and chronic rejecting human allografts with panels of  macrophage polarization markers are necessary to 
extend the understanding of  macrophage polarization in transplant rejection. Toki et al. contributed to this 
objective by staining for two markers of  M2 macrophages (CD163 and CD206) in 46 human renal allograft 
biopsies (10). While the majority of  CD68-positive cells coexpressed CD206 in ACR (98.7%) and AMR 
(73.5%), transcriptional profiles of  the 12-month biopsies revealed that inflammatory and IFN-γ signaling 
genes were associated with interstitial fibrosis/tubular atrophy.

Instead of  starting with the whole-transcriptome analysis, we started with a targeted set of  gene lists, 
in which genes are significantly overexpressed in M(IFN-γ), M(IL-4), and M(IL-10) macrophages. Because 
of  this, the 3-gene signature is enriched in inflammatory macrophages compared with other immune cell 
types and endothelial cells. However, despite this difficulty, in concordance with a previous report (5), we 
observed that epithelial cells also expressed CXCL11. In addition, we observed that M(IFN-γ) expressed 
significantly higher levels of  CXCL11. Further, no cell types other than M(IFN-γ) expressed all 3 genes. 
These observations point to a difficulty in definitively associating inflammatory macrophages as a predom-
inant source, and further work is needed to definitively determine the source of  the 3-gene signature that is 
outside the scope of  this manuscript.

Given the robust and consistent correlation of  inflammatory macrophage polarization with the 
CRM and its diagnostic and prognostic power, our results suggest that therapeutic inhibition of  
inflammatory macrophages may reduce graft injury and extend graft survival. Previously, we used 
a HLA-mismatched mouse model of  cardiac transplant to show that treatment with atorvastatin 
reduced F4/80+ macrophages in the allograft but cyclosporine A treatment did not (7). Further, statins 
can reduce macrophage proliferation by inactivating the small G protein/p38 MAPK pathway (37). 
Statin pretreatment is shown to reduce renal damage as well as renal dysfunction in ischemia/reper-
fusion injury by inducing heme oxygenase-1 (HMOX1) in infiltrating macrophages in rat models (38). 
Importantly, graft survival was increased in the atorvastatin treatment group compared with untreated 
mice. We also observed reduced graft failure with statin treatment in a cohort of  more than 2,500 renal 
transplant patients (7). Collectively, these results suggest that further mechanistic studies should be 
performed to better understand the mechanisms by which statins may reduce graft-infiltrating macro-
phages and their proliferation and improve graft survival.

More importantly, by identifying patients with subclinical injury and those with higher risk of  graft fail-
ure substantially earlier than clinical manifestation in a longitudinal cohort of  interstitial fibrosis/tubular 
atrophy patients, our results provide strong evidence that the M1 score could allow clinicians to treat high-
risk patients before significant damage is done to the allograft. The M1 score could potentially represent a 
marker for endpoint for graft loss and injury, as it could identify patients at risk of  injury prior to clinical 
manifestation and those at higher risk of  graft loss. If  validated in additional prospective cohorts, these 
results strongly suggest that the M1 score can help enrich enrollment in clinical trials by removing patients 

Table 2. Details of independent RT-qPCR data set used for validation, comprising 22 renal allograft 
biopsies (11 AR, 11 STA)

Stable (n = 11) Acute rejection (n = 11) P value (t test)
Male 7 8
Female 4 3
Protocol biopsy 10 8
Indication biopsy 1 3
Age in years (mean ± SD) 53.9 ± 15.6 53.0 ± 13.41 0.85
Serum creatinine (mean ± SD) 2.2 ± 1.2 2.0 ± 0.63 0.54
eGFR (mean ± SD) 36.5 ± 19.3 39 ± 15.82 0.75
Days after transplant (mean ± SD) 91 ± 10.8 99 ± 47.31 0.59

eGFR, estimated glomerular filtration rate.
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whose grafts are unlikely to fail regardless of  treatment and, hence, not show any potential improvement 
by the therapy. The M1 score could also serve as a surrogate endpoint, reducing the length of  a trial by 
markedly reducing the interval between intervention and ability to determine efficacy.

We found that the M1 score in protocol biopsies 6 months following transplant predicted histological 
damage at 24 months after transplant with sensitivity of  91.6% and specificity of  83%. This result, com-
bined with its high negative predictive value of  99% at 15% prevalence suggest that the M1 score be most 
applicable as a “rule-out test” for long-term graft loss. That is, patients with low M1 scores may be candi-
dates for less aggressive immunosuppression, limiting treatment-related side effects.

Our results are in concordance with those of  recent studies and improve upon them by identifying a 
parsimonious gene signature of  graft injury and failure in specific immune cells. A recent study has shown 
association of  immune response and inflammation-related gene networks with AR and graft loss, even in 
patients without histological evidence of  inflammation (39). O’Connell et al. described a 13-gene set for 
predicting chronic allograft injury (40). This gene set demonstrated high predictive ability for the develop-
ment of  fibrosis at 1 year and early allograft loss. In GSE21374 (25), the 13-gene set had a hazard ratio of  
2.72 for graft loss, as determined by the two principle components of  their gene set that were significantly 
associated with graft loss. In the same data set, the M1 score had a virtually identical hazard ratio of  2.79 
for graft loss. However, the mechanistic role of  the 13-gene set is not clear, although 7 of  13 genes seem 
overexpressed in fibroblasts. In contrast, our 3-gene signature is more parsimonious, is enriched for inflam-
matory macrophage polarization, and provides a possible mechanistic explanation of  the allograft injury 
that should be further investigated in follow-up studies.

Our study has several limitations. First, while we validated the 3-gene set using RT-qPCR in an inde-
pendent cohort of  renal transplant biopsies, it should be prospectively validated in a larger cohort. Sec-

Figure 3. M1 score is diagnostic and prognostic in longitudinally collected protocol biopsies from renal transplant patients. (A) M1 scores in renal biop-
sies from nonprogressors, progressors, and AR transplant patients in GSE25902. (B and C) Comparison of M1 scores (y axis) with Banff tubulitis (t-score) 
and interstitial inflammation (i-score) scores in renal transplant patients, respectively. (D and E) Comparison of M1 scores with ct-score and ci-score in 
STA renal transplant patients who did not have AR episodes in the first 2 years after transplant. (F) Change in M1 scores over time in STA renal trans-
plant patients. Patients were divided into 2 groups: progressors (n = 12, CADI ≥ 6) and nonprogressors (n = 12, CADI < 6) 2 years after transplant. Protocol 
biopsies were obtained from each patient at 3 time points: the time of transplant, 6 months after transplant, and 24 months after transplant. Repeat-
ed-measures analysis of variance was used to analyze CRM scores between progressors and nonprogressors over the time points. The dotted blue line 
represents the mean M1 score in AR biopsies; solid red line represents the mean M1 score in STA biopsies. (G) Six-month protocol biopsy M1 scores were 
used to predict patients with severe histological damage ≥2 years after transplant. A JT trend test was used to compute P values for correlations between 
M1 scores and Banff t- and i-scores as well as ct- and ci-scores. Error bars indicate the standard error of the mean.
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ond, the prognostic value of  the M1 score also needs to be validated in a prospective cohort. Third, the 
M1 score had lower accuracy in distinguishing AR and STA patients among the lung transplant patients 
than in distinguishing those from renal and heart transplant patients. The reasons for this remains 
unclear. It is possible that the lower AUCs were due to smaller sample sizes in the lung data set compared 
with heart and renal transplant cohorts. It is also possible that inflammatory macrophage polarization 
has lower association with the CRM in lung transplant patients, potentially due to the contribution of  
organ-specific responses that differentiate these tissues. However, it is also possible that the BAL samples 
from lung transplant patients used in our analysis are not representative of  biology of  rejection in lung 
biopsy, as BAL may reflect different constituent cell populations and functional and phenotypic differ-
ences within similar cell types (41). Fourth, as mentioned above, further studies are needed to definitively 
identify the sources of  the 3 genes in AR.

Overall, our analysis identified a parsimonious 3-gene signature with high diagnostic and prognostic 
power in 8 discovery and 8 validation cohorts comprising more than 1,700 graft biopsies from 4 different 
organs. Optimizing a clinical assay for this gene set to get results within a window of  clinical relevance 
should be feasible, as demonstrated by RT-PCR validation in an independent cohort. Additional pro-
spective studies are needed to further confirm our findings and to investigate the cell types and molecular 
pathways these genes are involved in.

Figure 4. High M1 score increases the risk of graft failure. Renal transplant biopsies in GSE21374 were divided into 
two groups based on the mean M1 score within the data set. Biopsies with M1 scores higher than the mean M1 score in 
GSE21374 were assigned to the high M1 score group; the rest were assigned to the low M1 score group.
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Methods
Definition of  proinflammatory macrophage, antiinflammatory macrophage, M(IFN-γ) score, and CRM scores. The 
M(IFN-γ) and M(IL-4) macrophage signatures used in this study were described previously as proinflam-
matory (M1) and antiinflammatory (M2) signatures by Krausgruber et al. (31). The M(IL-10) signature 
was drawn from the results of  a transcriptome analysis of  IL-10–stimulated macrophages (16).

To assess the association between macrophage signatures and risk of  rejection, we correlated their gene 
expression levels with those of  the 11-gene CRM (7), representing a common immunological and inflam-
matory response during AR in different transplanted organs.

All gene expression scores used in the manuscript [M(IL-4) score, M(IL-10 score), M(IFN-γ) score, 
3-gene M1 score, and CRM score] were calculated as a geometric mean of  corresponding constituent sig-
nature genes for each patient. M(IFN-γ), M(IL-4), and M(IL-10) signatures consist of  25, 26, and 18 genes, 
respectively, whereas the CRM consists of  11 genes (7).

Relative importance of  regressors in linear regression models. Macrophage scores for each patient were used 
in a linear regression model to assess their contribution to the CRM. We used a method based on averaging 
sequential sums of  squares over orderings of  regressors to compute relative importance of  gene scores in 
linear regression models (42, 43).

Gene-gene expression correlations among genes in the inflammatory macrophage polarization signature. Gene-
gene expression correlation was computed using MetaSignature (8). MetaSignature allows computation 
of  correlations of  gene pairs across expression profiles of  more than 600 publicly available data sets, 
covering more than 100 diseases.

Selection of  minimal gene set for diagnosing AR. We applied LASSO (44), a penalized regression method, to 
build a logistic regression model using a 25-gene signature (31) for M(IFN-γ) polarization to distinguish between 
AR and STA patients. We applied the regression model to 8 renal transplant data sets that were publicly avail-
able before October 2013 (the time of publication of the CRM). LASSO allows identification of sparse regres-
sion models by altering the model fitting process to select a subset of covariates for use in the final model, rather 
than using all of them. LASSO-based regression results in coefficients for some features (genes) to be exactly 0, 
allowing identification of the most important features in the model. We selected genes with non-0 coefficients in 
at least half of the cohorts (≥4), such that they were either positive or negative across all cohorts.

Immune cell–type enrichment tests. We performed immune cell–type enrichment as described previously (45, 
46). Briefly, we searched GEO for gene expression profiles of clinical samples of relevant immune cell types. We 
limited our search to samples run on Affymetrix platforms to ensure platform effect homogeneity. A total of 19 
data sets matched our criteria: GSE3982 (47), GSE5099 (48), GSE8668 (49), GSE11292 (50), GSE12453 (51), 
GSE13987 (52), GSE14879 (53), GSE15743 (54), GSE16020 (55), GSE16836 (56), GSE24759 (57), GSE28490 
(58), GSE28491 (58), GSE31773 (59), GSE34515 (60), GSE38043 (34), GSE39889 (35), GSE42519 (36), an 
dGSE49910 (61). We downloaded all data sets in raw format and normalized each one using gcRMA (62). For 
each sample, the mean of multiple probes mapping to the same gene was taken as the gene value. We discarded 
genes that were not present in all samples. For each cell type, we created a single vector by computing mean 
expression for each gene across all samples. To obtain a Z score for a gene set in each cell-type vector, we comput-
ed the geometric mean of expression levels of the 3 genes. These scores were standardized across all cell types, 
such that the score represented the number of SDs from the group mean. This thus represents the enrichment of  
a given gene set in each cell type, relative to other cell types.

RT-quantitative PCR. We performed RT-qPCR for the 3 genes in renal allograft biopsies using 
high-throughput RT-qPCR (LightCycler 96, Roche Diagnostics). RNA was isolated with Allprep DNA/
RNA/miRNA Universal kits (Qiagen) per the manufacturer’s instructions. 2.5 μg cellular RNA was reverse 
transcribed into cDNA using SuperScript II reverse transcriptase and random hexamer primers (Invitro-
gen Life Technologies). The PCR reaction was carried out in a mixture that contained appropriate sense 
and antisense primers in TaqMan assays of  the 6 M(IFN-γ) genes and the TaqMan Fast Universal PCR 
Master Mixture (Applied Biosystems). GAPDH was used as housekeeping gene. Each sample was assayed 
in duplicate in a MicroAmp optical 96-well plate. The ΔΔCt-method was used to determine relative gene 
expression levels. The IDs of  the assays used in PCR are as follows: GAPDH (Hs02758991_g1), CXCL11 
(Hs04187682_g1), CCL19 (Hs00171149_m1), and CD86 (Hs01567026_m1).

Statistics. The Wilcoxon test was utilized to compare two continuous variables, the JT test was used to deter-
mine the significance of trends. The Wald test was used to determine the significance of parameters in regression 
models. All tests were 2 tailed. P values of less than 0.05 were considered significant.
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