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Introduction
Adaptive immune memory mediated by T cells is central to host defense, and our appreciation of  its complex-
ity has evolved considerably over the last half  century. Unanticipated heterogeneity in cytokine production 
by memory T cells was introduced in 1986, and migratory heterogeneity in circulating memory T cells was 
introduced in 1999 with the description of  human central and effector memory T cells (TCM, TEM) (1, 2). Over 
the past 15 years, an additional population of  resident memory T cells (TRM) has been the focus of  many stud-
ies. TRM cells have been shown to reside long-term in peripheral tissues, rather than circulating through blood 
or secondary lymphoid organs, and they play a critical role in antigen-specific recall immune responses (3).

To date, regulation of  a series of  key transcription factors has been associated with TRM development and 
establishment. It has been well described that Hobit or its human analog Blimp1 are key regulators of  TRM 
maintenance that function via repression of  genes associated with tissue egress (4). Runx3 has been associated 
with TRM establishment, specifically in CD8+ TRM, and is responsible for a cell’s responsiveness to the TGF-β 
signals associated with TRM differentiation (5, 6). Conversely, TRM precursors have been shown to lose expres-
sion of  transcription factors that regulate tissue egress and lymph-homing molecules, including Tcf7, Eomes 
and Klf2 (7, 8). More recently, a study utilizing single-cell RNA-seq (scRNA-seq) by Kurd et al. described how 
the expression of  AP-1 transcription factor members Junb and Fosl2 as well as Nr4a2 appear to be essential for 
the development of  TRM in the small intestine, as their genetic deletion diminishes TRM numbers (9).

Tissue-resident memory T (TRM) cells play a central role in immune responses across all barrier 
tissues after infection. However, the mechanisms that drive TRM differentiation and priming for 
their recall effector function remains unclear. In this study, we leveraged newly generated and 
publicly available single-cell RNA-seq data generated across 10 developmental time points to 
define features of CD8+ TRM across both skin and small-intestine intraepithelial lymphocytes (siIEL). 
We employed linear modeling to capture gene programs that increase their expression levels in T 
cells transitioning from an effector to a memory state. In addition to capturing tissue-specific gene 
programs, we defined a temporal TRM signature across skin and siIEL that can distinguish TRM from 
circulating T cell populations. This TRM signature highlights biology that is missed in published 
signatures that compared bulk TRM to naive or nontissue resident memory populations. This 
temporal TRM signature included the AP-1 transcription factor family members Fos, Fosb, Fosl2, and 
Junb. ATAC-seq analysis detected AP-1–specific motifs at open chromatin sites in mature TRM. Cyclic 
immunofluorescence (CyCIF) tissue imaging detected nuclear colocalization of AP-1 members in 
resting CD8+ TRM greater than 100 days after infection. Taken together, these results reveal a critical 
role of AP-1 transcription factor members in TRM biology.
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CD8+ TRM development and biology have been studied extensively in a number of  infectious mouse 
models that employ transgenic T cells responsive to viral epitopes such as Vaccinia virus (VACV) and 
Herpes simplex virus (HSV) in skin as well as influenza in the lung (4, 10–17). Much of  our additional 
knowledge on CD8+ TRM in different tissues has emerged from similar mouse studies using lymphocytic 
choriomeningitis virus (LCMV) infection (6, 9, 18). Unlike VACV, HSV, and influenza, LCMV infection 
generates a systemic rather than a local immune response, leading to the formation of  TRM across many 
tissues, including gut, liver, lung, kidney, and salivary glands (19–24). While the local responses created by 
viruses such as VACV and the systemic responses induced by LCMV represent distinct biological phenom-
ena, comparisons of  the T cell differentiation processes in these 2 complimentary systems can help us to 
better define traits that are common in memory T cell development.

The present study leveraged scRNA-seq with MHC class I-restricted, ovalbumin-specific CD8 T cells 
(OT-Is) from the skin and draining lymph node (dLN) across a time course spanning 0–60 days after infec-
tion to study in more detail the evolution of  TRM and TCM in parallel from the same infection. The granularity 
and cellular resolution provided by such scRNA-seq strategy performed across a time course enabled us to 
define previously uncharacterized heterogeneity among cells from the dLN in the early time points after 
infection. Additionally, our experimental approach utilizing a time course allowed for downstream linear 
modeling. This analysis captured gene programs associated with temporal TRM development and defined 
genes associated with TRM and TCM cell fates in both our VACV-induced skin T cells, as well as publicly avail-
able LCMV-induced T cells in the small intestine. We identified progressively increasing AP-1 transcription 
factor family members as key genes contributing to our temporal TRM signature across tissue compartments, 
which were confirmed to be associated with mature resting TRM cells via ATAC-seq, CUT&RUN, and highly 
multiplexed, tissue-based CyCIF microscopy (25). In particular, the high expression and nuclear localization 
of  AP-1 members in fully differentiated resting TRM is unique among memory T cell lineages. These findings 
provide new insights into TRM biology that could only be gained by an extensive temporal analysis and raise 
some potentially novel possibilities about how TRM function in peripheral tissues.

Results
scRNA-seq of  OT-I cells reveals 13 T cell subsets paving the way for memory T cell development across time and tissue 
sources. OT-I transgenic mouse T cells were adoptively transferred into recipient mice one day before skin 
infection with a recombinant VACV that expresses chicken ovalbumin peptide (amino acids 257–264) under 
the control of  an early gene promoter (rVACV-OVA). Activated OT-I effector T cells were readily found in 
the skin as early as 5 days after infection and reached their maximum level at day 10 (data not shown), before 
beginning to decrease in number, as previously reported (17). scRNA-seq was performed on FACS-sorted 
OT-I cells from both skin and dLN, respectively, at serial time points from days 0–60 (Figure 1A and Sup-
plemental Figure 1A; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.187381DS1). After filtering out contaminating populations that lacked expression of  canonical T cell 
markers (Cd3d, Cd8a, Trac), we recovered 63,265 high-quality cells across dLN and skin (Figure 1B).

When visualized in low-dimension space, our filtered dataset showed uniform expression of  Cd3d, 
Cd8a, and Trbc2, with no contaminating non–T cell populations (Supplemental Figure 1B). To compare 
the data across both tissue sources and time point, we performed unbiased clustering analysis, which 
resulted in 13 distinct cell populations (Supplemental Figure 1C). The defined subsets were distinguished 
by different anatomical sites and time points, reflecting the emergence of  different T cell subsets over 
time (Figure 1, B–D, and Supplemental Figure 1, D and E). To best visualize the trajectory of  our cells, 
we used Force-directed layout embedding (FLE), a visualization tool designed to represent continuous 
developmental processes such as cell differentiation (26). Indeed, this algorithm has been used to suc-
cessfully visualize temporal scRNA-seq data (27, 28). This dimensionality reduction approach grouped 
cells in order of  time points measured—capturing the differentiation of  naive T cells to effector and 
memory cells—while also maintaining distinctions created by tissue sources and Leiden clustering (Fig-
ure 1, B–D). All subsets were defined by a distinct set of  genes using statistically complementary strate-
gies (AUC ≥ 0.75, one-vs-all [OVA] pseudobulk FDR < 0.05), justifying our cluster resolution (Figure 1E 
and Supplemental Table 1). C4 was almost exclusively comprised of  naive T cells and showed expression 
of  lymph-homing markers Sell and Ccr7 (Figure 1F). We identified a subset of  TCM cells (C1) that shared 
many phenotypic markers with naive cells but came from late time points (Figure 1D), likely reflecting 
the similar quiescent state of  naive and TCM cells. There was an additional subset of  dLN memory cells 
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Figure 1. scRNA-seq of dLN and skin T cells in a viral infection model over time. (A) Schematic of the experimental design. (B) Force-directed layout 
embedding (FLE) of 63,265 high-quality single cells, colored by predicted Leiden cluster listed on the right. (C and D) (top) Source (C) and time point (D) 
composition of every cluster. Bars represent the fraction of cells in every cluster that were derived from the corresponding source or time point. (bottom) FLE 
embedding of cells pseudocolored by tissue source (C) or time point (D). (E) Heatmap showing the top discriminative gene sets for each cell cluster compared 
with every other cluster. Color scales denote the normalized gene expression (mean zero, unit variance) for each cluster and the mean number of genes 
captured per cluster (top bar). (F) Dot plot showing the percentage (size of the dot) and scaled expression (color) of known T-cell subset marker genes.
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with high Ccr7 expression (C13), but they represented a very small proportion of  the captured cells (133 
cells, 0.21%) (Supplemental Figure 1F).

Five dLN populations (Figure 1C and Supplemental Figure 1D) were identified as having an effec-
tor-like phenotype that broadly expressed markers of  cytotoxicity (e.g., Gzma, Gzmb) (Figure 1F). These 
populations included C5 early effector cells that were largely made up by day 2 cells and were defined by 
markers known to be associated with early antigen activation such as Ezh2 and Eif3b (29, 30). Additional 
populations of  dLN effector T cells included the C8 population expressing high levels of  IFN stimulated 
gene (ISG) signature (e.g., Ifit3, Isg15), the C9 population defined by high levels of  cell cycle markers, the 
C10 population marked by the expression of  the known skin-homing marker Fut7 and TRM -associated 
gene Fabp5 and the C11 population that seemed to be defined by having a lower number of  genes detect-
ed, possibly reflecting lower-quality cells (Figure 1, E and F, and Supplemental Figure 1G). Over 75% of  
cells from C8–11 populations were from day 10 or earlier (Figure 1D). A small population of  dLN cells 
defined by high expression of  MHC-II machinery (C12) was also present in the data (n = 449 cells, 0.71%) 
(Supplemental Figure 1F). Given their small representation and our inability to distinguish doublets, this 
population was not explored further.

In the skin, three distinct populations were defined (Figure 1, B and C, and Supplemental Figure 1D). 
C2 represented the earliest of  the skin T cells with greater than 50% of  cells from days 5 and 10 (Figure 
1D and Supplemental Figure 1F), with an effector T cell phenotype defined by Tnfrsf18, Gzmb, and Ctla4 
expression (Figure 1E and Supplemental Table 1). In contrast, C3 and C6 were defined as TRM cells because 
they were made up largely from the later time points (greater than day 15) and nearly absent in the earliest 
time points (before or on day 10). C3 expressed the highest level of  Itgae and Icos, while C6 expressed higher 
levels of  Cd69 and Tnf. Interestingly, C3 and C6 were represented in nearly equal proportions in the middle 
time points (days 15–25: C3 = 43.7% of  skin cells, C6 = 44.0% of  skin cells) (Supplemental Figure 1F). 
However, C3 became the dominant TRM population by the end of  the time course (days 45–60: C3 = 87.2% 
of  skin cells, C6 = 12.2% of  skin cells), suggesting that C3 represented the mature resting TRM population.

T cell subsets with skin-homing features defined in lymph node. We sought to assess in which tissue 
compartment (dLN versus skin) and at which time point T cell subset differentiation start emerging 
through the course of  T cell development. Our first 2 time points revealed little heterogeneity, with 
96% of  naive day 0 cells being found in C4 and 98% of  day 2 cells belonging to C5 (Supplemental 
Figure 1F). Interestingly, cell subset diversification was first observed at day 5 across three distinct 
clusters (C8, C9, and C10) representing 85% of  day 5 cells from the dLN (Supplemental Figure 1F and 
Supplemental Figure 2A). C8 was enriched in IFN-response genes (Ifit1, Isg20) as well as Btg1, a gene 
associated with T cell quiescence (31) (Figure 2A and Supplemental Figure 2B). Additionally, C8 had 
the highest expression of  the lymph-homing molecule Sell. Subsets C9 and C10 were enriched for cell 
cycle markers (Stmn1, Mki67, Pclaf, Birc5), while only C10 expressed genes associated with skin-hom-
ing and TRM development (Fabp5, Fut7). Interestingly, the presence of  C8 and C9 cells persist through 
our time course (21% of  C8 were from later than day 15 and 3.7% of  C9 cells were from later than 
day 15 cells), while C10 is almost completely absent by day 15 (0.1% of  C10 cells were from later than 
day 15), suggesting C10 is a transient cell state in the dLN (Supplemental Figure 1F). To understand 
the relationship between these dLN populations (C8, C9, and C10) and the defined skin cell subsets 
(C2, C6, and C3), we used each cluster’s gene expression profile to calculate pairwise Spearman cor-
relations (Figure 2B), which showed that only the expression profile of  C10 correlated with C2, C6, 
and C3. These results support the hypothesis that the emergence of  cell subset diversification among 
antigen-activated T cells appears before trafficking to peripheral tissues.

AP-1–family transcription factors are associated with TRM development. We next employed the Waddington-Op-
timal Transport (Waddington-OT) algorithm through the CellRank suite of  tools (28, 32). Waddington-OT 
infers temporal couplings between cells profiled across our experimental time course, capturing the transcrip-
tional programs and regulators driving the transition between cell states (28). To determine if  the predicted 
rate of  cellular proliferation should be considered when modeling cellular trajectories, we calculated a growth 
rate based on expression of  genes associated with the cell cycle and apoptosis (Figure 2C). The predicted 
growth rates across the 13 clusters and 10 time points were uniform, with the exception of  C5, which was 
largely made up of  day 2 cells and most associated with a higher growth rate (mean log growth rate of  C5: 
0.64, mean log growth rate of  all other clusters: –0.13). However, given that this cluster represented only a 
small fraction of  our dataset (7,130 cells, 11.3%), we opted for modeling the data with a uniform growth rate.
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Figure 2. Heterogeneity of antigen-specific T cells early postinfection and transcription factors the drive memory T cell differentiation. (A) (left) FLE of 
clusters most associated with day 5 dLN cells (C8, C9, and C10). (right) Dot plot showing the percentage (size of the dot) and scaled expression (color) of 
select marker genes for each of the 3 clusters. (B) Pairwise Spearman correlation between the OVA log2 fold-change values of clusters C8, C9, and C10 ver-
sus C2, C6, and C3. (C) A growth rate was calculated by comparing the relative expression of genes involved in proliferation versus apoptosis. Histograms 
show distribution of this growth rate across all cells when grouped by cluster (upper panel) or grouped by time point (lower panel). (D) Probabilities of cells 
reaching the C1 (top) or C3 macrostate (bottom) as determined by absorption probabilities. Color scale represents probability of a cell to reach the given cell 
state (blue, low probability; yellow, high probability). (E) Transcription factors most associated with each Waddington-OT determined mature cell state. 
The top 10 transcription factors associated with C3 state (left, top) and C1 state (right, bottom) are labeled. (F) Schematic of the ATAC-seq experimental 
design. (G) HOMER-known motif analysis comparing TRM and TCM samples profiled. Shown are the transcription factors and position weight matrices for 
the top 10 known motifs for TRM (left) and TCM (right).
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When using the Waddington-OT algorithm to predict 2 mature T cell macrostates (regions of  the phe-
notypic manifold that cells are unlikely to leave), the subsets identified as the most likely to represent mature 
differentiated cells were C1 and C3, which correspond to late time point dLN (TCM) and skin cells (TRM), 
respectively (Figure 2D). To elucidate drivers of  memory T cell differentiation, we looked at the transcrip-
tion factors most associated with either the C1 or C3 lineages (Figure 2E and Supplemental Table 2). While 
the C1 trajectory was associated with transcription factors known to be associated with lymph homing and T 
cell memory (Tcf7, Eomes) (33), the C3 trajectory strongly correlated with AP-1 transcription factor members 
Junb, Fosl2, and Fos, along with other additional known immediate early genes Nr4a1, Nr4a2, and Nr4a3.

To investigate further the transcriptional regulators driving memory T cell differentiation, we performed 
ATAC-seq on D30 post-VACV skin infection T cells, including skin TRM and dLN TCM cells (Figure 2F, 
Supplemental Figure 1A, and Supplemental Figure 2C). We probed for differences in transcription factor 
motifs between these 2 T cell subsets using HOMER motif  analysis and, consistent with our transcription-
al signatures, we found the TRM cells to be strongly enriched with bZIP family transcription factor motifs 
including AP-1, Fos, JunB, and Fosl2, validating the regulators predicted by the Waddington-OT algorithm. 
Conversely, TCM were enriched for ETS family transcription factor motifs, including those corresponding to 
Ets1, Elk1, and Elk4 (Figure 2G and Supplemental Table 3).

Gene programs leading to a resident-memory state in Skin and siIEL T cells include distinct features. To better 
understand genes that are associated with TRM differentiation, skin T cells were subclustered independently 
for further downstream analysis. Additionally, we included in our analysis a previously published dataset that 
used similar time course kinetics to analyze the differentiation of  siIEL TRM cells using a LCMV infection 
model (9) (Figure 3A). We sought to examine the shared and distinct dynamics of  transcriptional changes 
across the T cell differentiation spectrum, which traditionally have been thought to be phasic going from 
a naive to effector to memory state. We first looked at the top 500 genes by variance in each dataset across 
time points, which revealed that the differentiation into a memory T cell state was not phasic but gradual in 
the weeks after infection. The dominant direction of  transcriptional changes in both the skin and siIEL were 
found to be either positive (skin, 261 genes; siIEL, 241 genes) or negative (skin, 203 genes; siIEL, 221 genes) 
linear correlations with time, while a much smaller fraction of  genes were found to be expressed highest in the 
middle timepoints (skin, 36 genes; siIEL, 38 genes) (Supplemental Figure 3A). To identify genes associated 
with TRM development, a linear model was fit to gene expression data, capturing genes that gradually increase 
from the early time points to later time points in each tissue. This approach defined 642 and 384 TRM genes in 
the siIEL and skin respectively (FDR < 0.1, regression slope > 0.15; Figure 3B and Supplemental Table 4). 
The majority of  TRM genes were unique to a single anatomical site (siIEL, 506 unique genes; skin, 248 unique 
genes). For example, the transcription factor Ikzf2 (Helios; P value = 5 ×10–4) was specific to skin (Figure 3, C 
and D). In addition to correlating with time, we can see that Ikzf2 also correlates with the expression of  the 
canonical TRM gene Itgae in skin, further supporting the notion that this gene is important for TRM formation. 
There were additional immune mediators specific to skin, including Ccr1 (P value = 0.001) and Gzmc (P value 
= 0.0001). In the siIEL compartment, there was an enrichment of  heat-shock proteins (HSPs) associated with 
TRM development (Hspa1a, Hspa1b, Hsph1, Hsp90aa1, Dnaja4) which have not been described in this context. 
Other siIEL TRM–defining transcripts included Atp8a2, (P value = 0.002) a gene recently reported to be asso-
ciated with siIEL regulation as well as transcription factors Klf3 (P value = 2 ×10–6), Tox (P value = 0.0001) 
and Gfi1 (P value = 0.003) (34). The expression of  these genes also correlated with Itgae in the siIEL, but 
not skin, further supporting their tissue specificity (Figure 3C). GSEA was then performed using both the 
HALLMARK and KEGG databases to identify gene sets that are associated with TRM development. Skin TRM 
development was distinctively associated with apoptosis and IL2 signaling pathways, while gene sets associat-
ed with siIEL TRM development included those for Wnt and Notch signaling (Supplemental Figure 3, B and 
C, and Supplemental Table 5). This analysis also revealed 13 shared TRM gene sets, including the Hallmark 
Hypoxia (skin NES = 1.90, P value = 0.0001; siIEL NES = 1.47, P value = 0.007) and TGF-β signaling (skin 
NES = 2.19, P value = 0.0001; siIEL NES = 1.80, P value = 0.001) pathways (Supplemental Figure 3D and 
Supplemental Table 5), suggesting shared core programs leading to resident-memory states in skin and siIEL 
T cells. In addition, there were 27 shared down-regulated TRM gene sets, including those associated with DNA 
replication and cell cycle progression, which would be expected of  T cells entering a quiescent state.

dLN and spleen T cells from VACV and LCMV models share transcriptional programs that lead to circulating 
memory T cell development. To better understand the development of  circulating memory T cells (TCIRC) 
across different viral infection systems, we employed the same linear modeling approach with dLN cells 
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from our VACV infection time course and spleen cells from the LCMV infection time course dataset (9) 
(Supplemental Figure 4, A and B). This approach defined 492 and 1212 dLN- and spleen-TCIRC genes 
respectively (FDR < 0.1, regression slope > 0.15; Supplemental Table 4). Unlike the distinct gene profiles 
observed between skin and siIEL TRM cells, the majority of  dLN TCIRC genes from the VACV model were 
shared with spleen TCIRC genes from the LCMV model (n = 396 genes, 80%) (Supplemental Figure 4B). 
Notably, the majority the dLN-specific genes in the spleen time course were most highly expressed at the 
latest time points (Supplemental Figure 4C). This would suggest that, while strict statistical criteria did not 
allow them to be considered TCIRC genes in the spleen, many may still be involved in TCIRC differentiation in 
dLN and spleen. In contrast, several TCIRC-specific genes found in the spleen of  LCMV-infected mice were 
not upregulated in the dLN TCIRC of  VACV-infected mice (n = 816 genes) (Supplemental Figure 4B). This 
could plausibly be attributed to distinct cellular compositions of  the TCIRC populations at each anatomical 
site. While the dLN will predominantly contain TCM cells, the spleen comprises a mix of  TCM and TEM.

Skin and siIEL T cells from VACV and LCMV models share core transcriptional programs essential to resident mem-
ory T cell development. While many of  the defined TRM genes were distinct in our 2 anatomical niches, we 
found a consensus TRM signature of  136 genes that were commonly expressed among both skin and siIEL 
compartments (Figure 3, B and E, and Supplemental Table 4; FDR < 0.1, regression slope > 0.15). Of these, 
100 genes were unique to TRM and 36 genes were also included in our TCIRC signature. We predict that these 
genes are important for general T cell memory and include Btg2 and Bcl2, factors known to mediate T cell qui-
escence and memory (Supplemental Table 4) (31, 35). When considering the expression of  our temporal TRM 
signature across our defined cell clusters, we see the highest expression in C3 (Supplemental Figure 5A). Pre-
vious studies generated gene sets associated with TRM development by comparing fully differentiated TRM to 
other differentiated memory T cell subsets (TCM, TEM). To highlight the strength of  our temporal linear mod-
eling to derive a TRM-related gene signature, we compared our results to two previously published TRM gene 
signatures (6, 16) (Figure 4A). Of the 100 genes found in our temporal TRM signature, 27 were found in at least 
one of  the other gene sets, with 3 genes being found across all gene signatures (Xcl1, Sik1, Rgs1). 73 genes were 
unique to our approach, including Id3, a transcription factor that has been associated with T cell memory (36) 
and the immediate early genes Fosb and Cebpb. Importantly, hierarchical clustering of  naive, TCM, TEM, and 
TRM microarray samples (16) based on the 100 gene temporal TRM signature perfectly segregated TRM from the 
others, further validating the use of  linear modeling to capture genes defining TRM (Figure 4B). Noteworthy, 
when we examine the genes unique to the largest current TRM gene set (6) (n = 121 genes) that was generated 
with microarray data, their expression patterns do not consistently track with TRM development in the skin 
and siIEL (Supplemental Figure 5B). In addition to the different analytical approaches taken to generate our 
temporal TRM gene set versus the previously published gene sets, many discrepancies may be due to the differ-
ences in technologies used to examine gene expression, as certain genes are not well captured by scRNA-seq.

To understand whether the temporal TRM gene signature we defined in mice were also found associated 
with human TRM, we reanalyzed a publicly available dataset from De Almeida et al. that examined TRM in 
the context of  tissue transplantation. This study performed scRNA-seq on immune cells isolated from the 
skin of  a patient 796 days after allogenic hematopoietic stem cell transplantation (allogenic-HSCT) (37) and 
included cells that were bona fide TRM, which were identified by the presence of  recipient single-nucleotide 
variants (SNVs), as well as donor T cells who lacked these SNVs and are predicted to be a mix of  resident 
and nonresident T cells (Figure 4C). Our reanalysis of  this dataset was able to identify CD4+ T cells, CD8+ 
T cells, γ-δ T cells, NK cells, regulatory T cells (Tregs), CD52-high T cells, and B cells from the transplant 
donor and recipient. When performing GSEA on the CD8+ T cells, we found that our temporal TRM gene 
set was associated with the recipient-derived TRM when compared to the donor-derived cells (Figure 4D). 

Figure 3. Linear modeling reveals tissue-specific and consensus temporal TRM gene signature in viral infection models. (A) Uniform Manifold Approx-
imation and Projection (UMAP) embedding of skin (left) and siIEL scRNA-seq data (right) pseudocolored by experimental time point. To the right of 
each time point UMAP are feature plots using color to indicate gene expression levels (Log(CPM)) of Gzma and Itgae. (B) Venn diagram of the significant 
TRM-associated genes in siIEL (left) and skin (right) as determined by linear modeling. (C) Scatter plots showing the Log(CPM) of select skin-specific (top) 
and siIEL-specific (bottom) TRM genes on the y axis and Log(CPM) of Itgae on the x axis. Color scale indicates both anatomical location and time point the 
sample was from. (D) Heatmap showing the top 100 genes unique to the skin (top) and siIEL (bottom) TRM signatures. Top bar indicates the associated 
timepoints. Color scales denote the normalized gene expression (mean zero, unit variance) for each timepoint. (E) Heatmap showing the temporal TRM 
gene signature across timepoints in both skin (left) and siIEL (right) datasets. Color scale denotes normalized gene expression (mean zero, unit variance) 
for each timepoint. The genes on top represent those unique to the TRM signature genes (n = 100), while the genes on the bottom represent those addition-
ally found in the TCIRC signature (n = 36). Transcription factors are labeled on the right.
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Notably, a similar pattern was seen when using the largest current TRM gene set from Milner et al. (6). How-
ever, the signal from the temporal TRM signature was driven by unique genes not found in other gene sets, 
including RGS2, ID3, and BTG1 (Figure 4E).

As further validation, we analyzed the T cells from the skin of  4 healthy donors published by 
Chennareddy et al. to see if  we could find a subset of  cells that had a gene expression pattern consistent 
with our temporal TRM signature (38) (Supplemental Figure 5C). Reclustering this data identified 3 distinct 
subsets of  CD8+ T cells, γ-δ T cells, NK cells and Tregs (Supplemental Figure 5D). When performing 
GSEA, two CD8+ T cell clusters (chenn_CD8T_1, chenn_CD8T_3) were significantly associated with 
our temporal TRM gene set as well as the TRM gene set from Milner et al., including a population defined 
by the AP-1 members JUNB and FOS (Supplemental Figure 5, E and F). Similar to our analysis of  the 
allogenic-HSCT data, the signal from each gene set was driven by genes not found in the other gene 
set (Supplemental Figure 5G). We then set out to analyze public scRNA-seq data from Boland et al. 
that included T cells from the rectum and peripheral blood mononuclear cells (PBMCs) of  9 healthy 
individuals (Supplemental Figure 5H) (39). Reclustering this data identified 3 CD4+ T cell populations, 
2 CD8+ T cell populations, and Tregs (Supplemental Figure 5I). Three populations (boland_CD4T_1, 
boland_CD8T_1, boland_Treg) were enriched in the rectum when compared with PBMCs (Supplemental 
Figure 5J). Importantly, the CD8+ cluster enriched in the rectum was significantly associated with both the 
temporal TRM gene set as well as the TRM gene set from Milner et al., with many genes driving the signal 
in the 2 gene sets being distinct (Supplemental Figure 5, K–M). Taken together with the allogenic-HSCT 
model of  TRM in humans, these analyses demonstrated the additive nature of  a linear model approach to 
finding genes associated with memory T cell development.

Previous work has demonstrated that the regulation of  key transcription factors are important 
for TRM development, such as Runx3, Notch1, and Zfp683 (4–6, 40). When looking at our temporal 
TRM signature, 20 of  the genes identified were transcription factors. These included AP-1 family 
members (Fos, Fosb, Fosl2, Junb, Maff), 2 members of  the NR4A family (Nr4a2, Nr4a3) as well as 
Rora (Figure 3E). In addition to the results of  our linear modeling on gene expression data, we 
defined TRM-associated transcription factors that are both tissue-specific and shared across the skin 
and siIEL compartments using a modified version of  the SCENIC algorithm. This algorithm takes 
into account both expression of  transcription factor genes and those with the potential to be targeted 
by a given transcription factor based on the presence of  specific motifs, creating “AUCell” scores, 
which could then be examined over time (Supplemental Figure 6A and Supplemental Table 6) (41, 
42). The skin-specific regulons identified (FDR < 0.1) included Klf6 (P value = 8.5 × 10–5) Irf4 (P val-
ue = 0.004), Nfil3 (P value = 1.2 × 10–5), and Spi1 (P value = 0.001). Several siIEL-specific regulons 
were also identified (FDR < 0.1) that included Foxo3 (P value = 0.001), Elf2 (P value = 0.01), and 
Myc (P value = 0.04), which have all been reported to either inhibit proliferation and/or have been 
associated with TRM development in an LCMV model (9, 43, 44).

AP-1 transcription factor family members are common to TRM across different anatomical niches. Interestingly, 
the SCENIC analysis identified 12 regulons common to both skin and siIEL TRM development, including 
the AP-1 transcription factor members Fos (skin P value = 1.5 × 10–5; siIEL P value = 7 × 10–4), Fosb (skin P 
value = 3 × 10–6; siIEL P value = 2 × 10–4), Fosl2 (skin P value = 1.4 × 10–5; siIEL P value = 1 × 10–4) and Junb 
(skin P value = 3 × 10–5; siIEL P value = 0.008) (Figure 5A and Supplemental Table 6). In addition to being 
significant in both skin and siIEL, these AP-1 members had the highest regression slopes of  any regulons 
in skin (Supplemental Figure 6B). When looking at the transcription factor subfamilies that encompass the 

Figure 4. Temporal TRM gene signature distinguishes TRM in mouse and human models. (A) UpSet plot showing the overlap between our temporal TRM 
signature and two previously published signatures by Milner et al. (6) and Mackay et al. (16). Each column represents a unique intersection, as shown 
by the dark points in the dot-matrix. Bars for each column represent the size of the overlap between each combination. Bars on left represent the 
size of each unique TRM gene set. (B) Heatmap showing expression levels of our temporal TRM gene signature across T cell subset microarray samples 
publicly available from Mackay et al. (20). Color scales denote the normalized gene expression (mean zero, unit variance) for each sample. Genes listed 
in black are unique to our temporal TRM signature. Genes listed in red are those that are shared among all 3 TRM signatures. (C) UMAP embedding of 
1,829 skin lymphocytes from a donor 796 days after allogenic hematopoietic stem cell transplantation (42) colored by T cell source (left) and annotated 
cell type (middle). (right) Dot plot showing the percentage (size of the dot) and scaled expression (color) of select marker genes for the annotated cell 
types. (D) Host versus donor-derived CD8+ T cells were compared and genes associated with each were ranked (highest rank = genes associated with 
host-derived CD8+ T cells, lowest rank = genes associated with donor-derived T cells). This ranking was used as input to GSEA using the temporal TRM 
gene set and the TRM gene set published by Milner et al. (6). (E) Venn diagram of the leading edge genes associated with the GSEA analysis shown in D.
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proteins that are a part of  functional AP-1 dimers, those of  the Fos and Jun family were most consistently 
upregulated in TRM (Figure 5B). The expression of  AP-1 members also correlated with Itgae in the skin 
and siIEL (Figure 5C). A prevailing hypothesis about the role of  AP-1 transcription factor members in 
TRM development is that they coordinate the downregulation of  the transcription factor T-bet (encoded by 
the gene Tbx21) (9, 45). Surprisingly, however, Tbx21 itself  met our stringent criteria to be included in our 
temporal TRM signature (skin: regression slope = 0.32, P value = 4.39 × 10–10; siIEL: regression slope = 0.15, 
P value = 0.002). Furthermore, expression of  Tbx21 showed a strong positive correlation with the AP-1 
family members Fos (r = 0.78, P value = 3 × 10–4), Fosl2 (r = 0.82, P value 1 × 10–4), Fosb (r = 0.78, P value = 
3 × 10–4) and Junb (r = 0.77, P value = 5 × 10–4) across both skin and siIEL, suggesting the proposed nega-
tive regulation of  T-bet by AP-1 members to enable TRM development is unlikely (Figure 5, D and E). Our 
ATAC-seq analysis identified open-chromatin sites in fully mature TRM around genes from our temporal 
TRM signature. While many open-chromatin sites were shared with TCM, there were specific peaks enriched 
in TRM with predicted Fos/Junb binding motifs (Figure 5F, red lines).

We next looked for expression of AP-1 family members in human TRM in the context of tissue transplanta-
tion. When comparing the host versus donor CD8+ T cells 796 days after allogenic-HSCT (37), we saw increased 
JUNB expression in the host cells, which should represent a bona fide population of TRM (Supplemental Figure 
6C). We did not see an increase in other AP-1 family members, suggesting that JUNB might be uniquely import-
ant in human skin TRM. In addition, Fitzpatrick et al. performed scRNA-seq on donor-derived T cells from an 
intestinal transplant recipient 1 year after transplantation (46). When reanalyzing this data, we observed that 
the CD8+ T cells from this dataset show robust expression of many AP-1 members (Supplemental Figure 6D).

We next endeavored to visualize AP-1 family members in TRM by CyCIF (25). Specifically, we used 
high-plex tissue imaging to assess the expression of  CD8, CD11c, CD103, cFos, and JunB to determine 
whether AP-1 family member proteins could be identified in skin OT-I TRM cells more than 100 days after 
infection and whether they were localized to the cytoplasm or the nucleus (Figure 6, A and B). We were 
able to profile 159 CD8+CD103+ T cells, of  which 36.5% (n = 58 cells) and 35.2% (n = 56 cells) stained for 
JunB and cFos, respectively. Of  the cells that expressed either AP-1 member, 52% (n = 39 cells) expressed 
both JunB and cFos. While CD8 and CD103 were clearly diffusely expressed, consistent with membrane 
localization, JunB and cFos staining was generally found in the nucleus (colocalized with the nuclear 
Hoechst stain). To date, this is the first demonstration of  expression of  JunB and cFos in the nucleus of  
resting memory T cells. This suggests that AP-1 complexes are preformed and poised to be activated in TRM.

The nuclear localization of  AP-1 members suggested these transcription factors are DNA-bound. 
Therefore, we pursued CUT&RUN (cleavage under targets and release using nuclease) to identify AP-1–
DNA binding sites in TRM while profiling TCM as a control (Figure 6C). Specifically, we targeted JunB, given 
that our analyses suggest it’s importance in both human and mouse skin TRM. We found motifs for multiple 
Interferon regulatory factors (IRF) transcription factors enriched in TRM (Figure 6D). Additionally, there 
was an enrichment of  JunB binding at nuclear factor of  activated T cells (NFAT) motifs in TRM, consistent 
with the hypothesis that these cells are poised to be activated in a recall response.

Discussion
In this study, we sought to carefully examine the ontogeny and development of  different memory T 
cells arising from a common naive T cell population by performing a scRNA-seq time course analysis 
of  CD8+ OT-I T cells after a skin infection with VACV. To strengthen our study, we also incorporated 
an analogous scRNA-seq time course dataset that looked at LCMV-specific T cells in the siIEL. Our 
major findings are summarized in Figure 6E.

Figure 5. AP-1 transcription factor family members correlate with TRM development. (A) Mean SCENIC Aucell scores for select regulons over time in the skin 
(left) and siIEL (right). Each line represents a unique regulon and the points represent the mean AUCell score for the regulon at the experimental timepoint. 
(B) linear modeling of AP-1 subfamilies in skin and siIEL. Each row is a gene with dots indicating the regression slope and 95% confidence interval from 
linear modeling of expression over time. Color indicates if it met our criteria to be considered a temporal-TRM gene (FDR < 0.1, % cells > 5, regression slope 
> 0.15). (C) Expression of Fos-family genes and Junb versus Itgae over time in skin and siIEL. Each point represents a sample detailed in the legend that is 
shared with (D), and the x- and y-axes represent the Log(CPM) of Itgae and Fos family members, respectively. (D) Scatter plots showing the Log(CPM) of 
Tbx21 on the y-axis and Log(CPM) of Fosl2, Fos, Fosb, and Junb on the x axis across skin and siIEL timepoints. Color scale indicates both anatomical location 
and experimental timepoint from which the sample came from. r and P values are from Pearson correlation. (E) Tbx21 expression in skin and siIEL over time. 
The x axis represents time while the y axis represents Log(CPM) of Tbx21. Dots are connected by their neighboring timepoints. (F) ATAC-seq tracks from our 
TRM and TCM samples at the Dusp1 and Fosb loci. Dotted line represents location of predicted Fos binding motif enriched in TRM versus TCM.
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Figure 6. AP-1 is located in the nucleus of TRM and are bound to sites of NFAT motifs. (A) Quantification of CD8+CD103+ skin TRM as detected by t-CyCIF, 
broken down by the presence of cFos and JunB staining. The numbers in the boxes represent the number of cells in each category. 159 CD8+ CD11c– cells 
were identified from the tail and ear skin from 5 mice. (B) t-CyCIF images of mouse tail skin epidermis 154 days after rVACV-OVA vaccination. Duplex 
and composite images of highlighted CD8+ TRM cell expressing CD8 (red), JunB (cyan), and cFos (green) and CD103 (yellow). Arrows indicate TRM cells with 
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Our analysis of  cells isolated from the dLN showed that T cell subsets derived from naive cells showed 
cellular diversification as early as day 5. Intriguingly, one of  the three dLN subsets (C10), found predom-
inantly at day 5, exclusively expressed Fut7, which has been shown to be necessary for T cell trafficking 
to the skin, leading us to speculate that this population represents the cells destined to for tissue homing 
(47). Additionally, the gene expression profile of  C10 most closely correlated with skin clusters C2, C3, 
and C6, supporting the hypothesis that these are skin-trafficking cells. In contrast, among the early dLN 
populations, C8 showed the highest expression of  Sell as well as Btg1, a gene recently associated with T cell 
quiescence (31). These results support the hypothesis that activation in the dLN leads to the generation of  
different T cell subsets, some of  which appear to be destined to traffic to the skin, while others are destined 
to remain in the lymph node or recirculate between blood and dLN.

Our comparative analysis of  transcriptional programs driving TRM ontogeny across anatomical sites 
found 506 and 248 genes that were unique to siIEL and skin compartments, respectively. The siIEL-spe-
cific genes were enriched for heat-shock proteins (Hspa1a, Hspa1b, Hsph1, Hsp90aa1, Dnaja4). While never 
described in this context, heat-shock proteins are known to play a role in response to hypoxia (48), an 
external cue that has been linked to TRM development (49). Whether the upregulation of  these genes in the 
LCMV model is related to hypoxic signaling or other external factors remains to be understood. In parallel, 
Ikzf2 (encodes Helios) was identified as a skin-specific TRM development transcription factor, which is best 
known for its ability to modulate regulatory T cell effector function and identity (50, 51). Nonetheless, 
though Ikzf2 was uniquely expressed in the skin dataset, we cannot rule out that this distinction was due 
to differences in the infectious agents used to induce TRM phenotypes (VACV versus LCMV). Indeed, an 
IKZF2-expressing population of  TRM cells has been described in the human intestine (46). The TRM cells 
isolated from the skin following VACV infection are those from the site of  primary infection, where differ-
entiation is driven in part by acute tissue inflammation. In contrast, the TRM cells in the small intestine that 
arise from LCMV infection delivered intraperitoneally represent those from a secondarily populated site, 
likely with much less inflammation. Such distinctions in the 2 infectious models that were analyzed could 
contribute to the differences in TRM-associated genes across tissue compartments.

Despite the differences in experimental design, tissues analyzed, and viruses used, 136 genes were 
commonly associated with TRM development in both skin and siIEL. Of  those 136 genes, 100 were defined 
as our temporal TRM signature, after removing the 36 memory genes also associated with TCIRC populations. 
Previously reported TRM signatures were derived from the comparison of  TRM to circulating memory T cells 
(6, 16). While these comparisons are valuable, our analysis indicated that the dominant gene expression 
changes leading to T cell memory happen gradually over time, rather than in a phasic manner. Using a 
linear model approach enabled us to capture this dominant pattern and define TRM differentiation at higher 
granularity by considering the effector T cell phase as our baseline. Additionally, our approach enabled 
us to compare the results of  TRM to that of  TCIRC to find genes common among different mature memory 
T cell fates, regardless of  circulatory capacity. Encouragingly, we did find overlap between our 100-gene 
temporal TRM signature and those previously reported (6, 16). These included genes such as Itgae, Nr4a3, 
and Rgs1, all of  which have been shown to play a role in TRM formation (6, 52). It should be noted that our 
temporal signature lacks certain factors previously defined as TRM-specific genes, such as Runx3, Notch1, 
Znf683 (encodes Hobit), and Prdm1 (encodes Blimp1). Runx3 was found to be a TRM-associated gene in the 
siIEL compartment, but not in skin. Notch1 was found to have low expression in both the skin (8.7% of  
cells across all timepoints) and siIEL (11.7% of  cells across all timepoints) datasets, and its association with 
TRM development has been best described in the lung (40), suggesting it may be a tissue-specific driver of  
TRM differentiation. Prdm1 and Zfp683 were both expressed at very low levels in our skin cells (Prdm1: 4% 
across all timepoints, Zfp683: 0.8% across all timepoints), making it difficult to evaluate their contribution 
in driving TRM development through our linear modeling approach. However, it should be noted that Prdm1 
did meet our significance threshold for our siIEL TRM gene list (regression slope = 0.199, P value = 3.2 × 
10 –7). Importantly, our 100-gene TRM signature also includes genes uniquely captured by our linear mod-
eling approach (e.g., Fosb, Id3, Cebpb) that could successfully distinguish resident from circulating T cell 
subsets, further validating our analytical strategy. Given our model’s ability to find new genes previously 

positive JunB and cFos staining when multiple cells are in the same field of view. Scale bars: 10 μm.(C) Schematic of the CUT&RUN experimental design. 
Schematic created using BioRender (https://biorender.com). (D) HOMER-known motif analysis comparing TRM and TCM CUT&RUN samples profiled. Shown 
are the transcription factors and position weight matrices for the top 10 known motifs for TRM. NFAT motifs are bolded. (E) Summary of major findings.
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undescribed by other gene sets while also lacking genes known to be important for TRM development, we 
view the temporal signature as additive to the current field of  knowledge. Future work will be needed to 
characterize the role of  these newly defined targets in TRM development.

As noted above, this temporal TRM signature was hallmarked by AP-1 transcription factor members, whose 
importance in TRM differentiation across tissues was also highlighted in our SCENIC analysis. Additionally, 
motifs corresponding to AP-1 binding sites were found to be enriched in the open chromatin of TRM when com-
pared to TCM. The importance of AP-1 family members in TRM development have been described recently in the 
siIEL (9) and skin (53), and our analyses confirm that this is likely a generalizable marker of TRM development 
and maintenance. However, our study is the first to show AP-1–member protein nuclear staining in resting TRM 
cells. In addition, this is also the first study to show that human TRM distinctively express AP-1 transcription 
factor members. While multiple AP-1 members were expressed in human siIEL, JUNB was most specific for 
TRM in skin. One concern regarding the upregulation of AP-1 family members is their ability to be induced 
by heat-based tissue digestions (54). While we cannot dispute that heat digestion is a mechanism for AP-1 
upregulation, our linear modeling that produced our TRM signature inherently controls for this, as all samples 
across time were digested equivalently. In addition, the upregulation of JUNB in the host CD8+ T cells when 
compared to donor cells from an allogenic-HSCT patient cannot solely be attributed to digestion, as they were 
all from the same biopsy. One limitation of finding AP-1 members in the TRM in the context of tissue transplan-
tation is that we cannot rule out other factors inherent to that setting, such as altered activation and immuno-
suppression. However, our CyCIF staining of AP-1 members in resting TRM also highlights the expression of  
these transcription factors outside the context of other technical factors. One proposed hypothesis for the role 
of AP-1 transcription factors in TRM differentiation is that it can suppress T-bet expression, a reported necessary 
step for TRM development (15). However, in both the skin and siIEL tissue niches, we saw a strong correlation 
between AP-1 family members and T-bet expression levels (encoded by the Tbx21 gene). Given this observa-
tion, it remains unclear what role AP-1 plays in TRM differentiation and maintenance, and future mechanistic 
studies that alter expression of AP-1 members in TRM are necessary to provide clarity.

This is a potentially novel observation yielding a new perspective on AP-1 members in mature TRM 
biology. In nonadaptive immunity settings in murine epidermal stem cells, constitutively expressed AP-1 
members (some bound to DNA at rest) have been shown to be critical to orchestrate inflammatory memo-
ry, leaving keratinocytes poised for rapid recall responses (55). AP-1 has been shown to be important during 
initial T cell activation, directing chromatin remodeling of  naive T cells (56). There is also good evidence 
that T cell receptor ligation by antigen in the context of  MHC results in calcium influx and nuclear translo-
cation of  NFAT family members (57). NFAT–AP-1 complexes involving contiguous TF factor binding sites 
are some of  the most potent known superenhancers of  T cell cytokines and effector functions (57–61). Giv-
en this, it is tempting to hypothesize that constitutive AP-1 expression and its nuclear localization enable 
TRM cells to be “poised” for the rapid recall immune responses after TCR engagement alone, which results 
in NFAT nuclear translocation and formation of  the NFAT/AP-1 transcription enhancer complex. Thus, 
rather than simply being involved in the development of  TRM, AP-1 members are critical to the unique func-
tional characteristic of  TRM, including rapid recall. If  true, this is a previously unreported mode of  memory 
T cell activation, which borrows from innate immune memory.

Methods
Sex as a biological variable. The majority of  mice used in this study were male C57BL/6J mice. Sex was not 
considered as a biological variable.

Mice. WT C57BL/6J mice were purchased from Jackson Laboratory. OT-I/Rag1–/– /Thy1.1 mice were 
bred and maintained in the animal facility of  Harvard Institute of  Medicine, Harvard Medical School.

Adoptive transfer and viral infection. For adoptive transfer, lymph nodes were collected from naive OT-I/
Rag1–/– /Thy1.1 mice at the age of  6–8 weeks. OT-I T cells were then purified by negative magnetic cell 
sorting using mouse CD8α+ T-cell isolation kit (130-104-075; Miltenyi Biotec) according to the manufac-
ture’s protocols. Purified OT-I cells were then transferred intravenously into gender-matched C57BL/6J 
recipient mice at the number of  5 × 105 cells per mice.

VACV-OVA was a gift from Bernard Moss (NIH, Bethesda, Maryland, USA). VACV-OVA stocks were 
expanded in Hela cells (American Tissue Culture Company) and titrated in CV-1 cells (American Tissue 
Culture Company) by standard procedures. VACV-OVA were infected to mice at 2 × 106 PFU/mice by skin 
scarification (s.s.) on ear and tail as described previously (12, 13).
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Flow cytometry, cell sorting, and imaging flow cytometry. Single cell suspensions were prepared as described 
before. Briefly, for lymph nodes, tissue specimens were mashed through 70 μm cell strainers before being 
lysed with RBC lysis buffer (00-4333-57; eBioscience). For skin, tail skin as well as separated dorsal and 
ventral halves of  ear skin were minced and digested at 37°C for 30 minutes, with HBSS solution with 1 mg/
mL collagenase A (11088785103; Roche) and 40 μg/mL DNase I (10104159001; Roche) before being fil-
tered through 70 μm cell strainers. Cells were washed 3 times and kept in PBS supplemented with 2% FBS.

For flow cytometry, digested and purified skin single cells suspensions were stained and loaded onto 
FACSCanto II (BD Biosciences) for analysis or FACSAria (BD Biosciences) for sorting. To isolate OT-I 
cells for scRNA-seq, cells were stained with antibodies against mouse CD8a (100714; Biolegend) and 
CD90.1 (202518, Biolegend). For the isolation of  TCM cells, cells were also stained with an antibody against 
CD62L (560514; BD). FACS data were analyzed with Flowjo software (Tree Star).

T-CyCIF imaging. FFPE sections of  mouse tail and ear skin were prepared and t-CyCIF was performed 
as previously reported (25, 62) following the published protocol on protocols.io (dx.doi.org/10.17504/proto-
cols.io.bjiukkew). Slides were stained with Hoechst 33342 (0.25 μg/mL; LI-COR Biosciences) and antibodies 
against CD8a (83012BC; Cell Signaling Technologies), CD103 (AF1990; R&D Systems), CD11c (64675BC; 
Cell Signaling Technologies), JunB (3753; Cell Signaling Technologies), and cFos (sc-166940 AF647; Santa 
Cruz Biotechnologies) in SuperBlockTM Blocking Buffer. Images were acquired using the CyteFinder II HT 
Instrument (RareCyte Inc. Seattle WA) with a 20x/0.75 NA objective. ASHLAR (Alignment by Simultane-
ous Harmonization of  Layer/Adjacency Registration) software was used to stitch the image tiles and register 
each immunofluorescence cycle together into a single OME-TIFF file. For quantification, 5 tails and 8 ears 
from 5 mice were manually analyzed for CD8+ CD11c– cells expressing CD103, JunB, and cFos.

scRNA-seq. For the scRNA-seq profiling, live CD8a+CD90.1+ cells were sorted as described above and 
then approximately 12,000 single cells were loaded to each 10X channel with a recovery goal of  6,000 sin-
gle cells. Cell suspensions were loaded along with reverse transcriptase reagents, 3′ gel beads, and emulsifi-
cation oil onto separate channels of  a 10X Single Cell B Chip, which was loaded into the 10X Chromium 
instrument to generate emulsions. Emulsions were transferred to PCR strip tubes for immediate processing 
and reverse transcription. Library preparation was performed according to manufacturer’s recommenda-
tions. Expression libraries were generated using the Chromium Single Cell 3′V3 chemistry (10X Genomics 
PN-120262). DNA and library quality was evaluated using an Agilent 2100 Bioanalyzer and concentration 
was quantified using the Qubit dsDNA high-sensitivity reagents (Thermo Fisher Scientific). Gene expres-
sion libraries were sequenced on an Illumina NextSeq instrument using the Illumina NextSeq 500/550 
with the following sequencing configuration: Read 1=28, Read 2=56, index 1=8, index 2=0.

CUT&RUN. Two groups of  20 mice received 1 × 106 Thy1.1 congenic OT-I cells by retroorbital 
injection 1 day before VACV-OVA infection on the tail and ears. On day 30 and day 45 after infec-
tion, the tails, ears, and draining lymph nodes were prepared for cell sorting. Cells were sorted based 
on live/dead discrimination dye, CD45+TCRb+CD8+CD4–Thy1.1+. From the skin, 27,600 and 16,600 
OT-I cells were isolated on day 30 and day 45, respectively. 350,000 and 500,000 OT-I cells were sort-
ed from the lymph nodes on day 30 and 45, respectively. After sorting, cells were immediately put on 
ice. Cells were then resuspended in pre-chilled FBS+10% DMSO and transferred to a Mr. Frosty Cryo 
Freezing Container and placed in a –80°C freezer. Cells were sent to Active Motif  for CUT&RUN 
analysis against JunB (Cell signaling; clone C37F9). To increase the signal from JunB, OT-I cells from 
the two time points were pooled.

Statistics. All statistics for this study were calculated in R. All P values were corrected with a false dis-
covery rate using using the Benjamini-Hochberg method and findings with an FDR < 0.1 were considered 
significant. All tests of  significance were 2-sided. Details on how P-values were calculated for all computa-
tional analyses can be found in our Supplemental methods. All differential gene expression P values were 
calculated with a Wald test on pseudobulk counts using the DESeq2 package in R. P values for SCENIC 
analyses were calculated with linear regression using the “lm” function in R. Empirical p-values via permu-
tation were calculated for GSEA using the fgsea package in R.

Study approval. All animal experiments protocols were approved by the Institutional Animal Care and Use 
Committee at Brigham and Women’s Hospital. All animal experiments were conducted in accordance with 
the guidelines from the Center for Animal Resources and Comparative Medicine at Harvard Medical School.

Data availability. scRNA-seq count matrices and related data is deposited in the GEO database (under 
accession # GSE237735). Values for all data points in graphs are reported in the Supporting Data Values file.

https://doi.org/10.1172/jci.insight.187381
https://doi.org/10.17504/protocols.io.bjiukkew
https://doi.org/10.17504/protocols.io.bjiukkew
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Code availability. Source code for data analysis is available on GitHub (https://github.com/villani-lab/
trm_development [branch: main, commit ID: e537bcb]). A full list of  software packages and versions 
included in the analyses is included in Supplemental Table 7.
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