Sclerostin antibody corrects periodontal disease in type 2 diabetic mice

Hakan Turkkahraman, … , Xue Yuan, Teresita M. Bellido

JCI Insight. 2024. https://doi.org/10.1172/jci.insight.181940.

Type 2 diabetes (T2D) is on the rise worldwide and is associated with various complications of the oral cavity. Using an adult-onset diabetes preclinical model, we demonstrated profound periodontal alterations in T2D mice, including inflamed gingiva, disintegrated periodontal ligaments (PDL), marked alveolar bone loss, and unbalanced bone remodeling due to decreased formation and increased resorption. Notably, we observed elevated levels of the Wnt signaling inhibitor sclerostin in the alveolar bone of T2D mice. Motivated by these findings, we investigated whether a sclerostin-neutralizing antibody (Scl-Ab) could rescue the compromised periodontium in T2D mice. Administering Scl-Ab subcutaneously once a week for four weeks, starting four weeks after T2D induction, led to substantial increases in bone mass. This effect was attributed to the inhibition of osteoclasts and promotion of osteoblasts in both control and T2D mice, effectively reversing the bone loss caused by T2D. Furthermore, Scl-Ab stimulated PDL cell proliferation, partially restored the PDL fibers, and mitigated inflammation in the periodontium. Our study thus established a T2D-induced periodontitis mouse model characterized by inflammation and tissue degeneration. Scl-Ab emerged as a promising intervention to counteract the detrimental effects of T2D on the periodontium, exhibiting limited side effects on other craniofacial hard tissues.

Find the latest version:

https://jci.me/181940/pdf
Sclerostin antibody corrects periodontal disease in type 2 diabetic mice

Hakan Turkkahraman¹, Shannan Flanagan², Tianli Zhu³, Nisreen Akel⁴, Silvia Marino⁴, Dayane Ortega-Gonzalez², Xue Yuan²,⁵, Teresita M. Bellido⁴,⁶

¹ Indiana University School of Dentistry, Department of Orthodontics and Oral Facial Genetics, Indianapolis, IN, USA.
² Indiana University School of Medicine, Department of Otolaryngology-Head & Neck Surgery, Indianapolis, IN, USA.
³ Indiana University School of Dentistry, Department of Biomedical Sciences and Comprehensive Care, Indianapolis, IN, USA.
⁴ University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, AR, USA.
⁵ Indiana University School of Medicine, Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
⁶ Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, AR, USA.

Corresponding authors:
Xue Yuan, PhD, 1160 West Michigan Street, GK305, Indianapolis, IN, 46202. Telephone number: 317-274-4921. Email: yuanxue@iu.edu

Teresita Bellido, PhD, West Markham Street, Slot 505, Little Rock, AR, 72205. Telephone number: 317-645-8897. E-mail: TMBellido@uams.edu

The authors have declared that no conflict of interest exists.
ABSTRACT

Type 2 diabetes (T2D) is on the rise worldwide and is associated with various complications of the oral cavity. Using an adult-onset diabetes preclinical model, we demonstrated profound periodontal alterations in T2D mice, including inflamed gingiva, disintegrated periodontal ligaments (PDL), marked alveolar bone loss, and unbalanced bone remodeling due to decreased formation and increased resorption. Notably, we observed elevated levels of the Wnt signaling inhibitor sclerostin in the alveolar bone of T2D mice. Motivated by these findings, we investigated whether a sclerostin-neutralizing antibody (Scl-Ab) could rescue the compromised periodontium in T2D mice. Administering Scl-Ab subcutaneously once a week for four weeks, starting four weeks after T2D induction, led to substantial increases in bone mass. This effect was attributed to the inhibition of osteoclasts and promotion of osteoblasts in both control and T2D mice, effectively reversing the bone loss caused by T2D. Furthermore, Scl-Ab stimulated PDL cell proliferation, partially restored the PDL fibers, and mitigated inflammation in the periodontium. Our study thus established a T2D-induced periodontitis mouse model characterized by inflammation and tissue degeneration. Scl-Ab emerged as a promising intervention to counteract the detrimental effects of T2D on the periodontium, exhibiting limited side effects on other craniofacial hard tissues.
INTRODUCTION

The alveolar bone is a specialized segment of bone within the maxillary and mandibular regions that encapsulates and provides support to the roots of teeth. Its role is to ensure that teeth are securely anchored, thereby effectively distributing the forces generated during mastication (1, 2). Continuous remodeling of alveolar bone, driven by balanced osteoblast and osteoclast activity regulated through biochemical signaling, mechanical signals, and other cues, is essential to maintain the tooth-bone interface and adapt to changing demands (3). Disruptions that cause a loss of stable alveolar bone support can lead to loosening of tooth roots, an increased risk of infection, and ultimately tooth loss and compromised masticatory function (1-3).

Type 2 diabetes (T2D), the most common form of diabetes, is rapidly surging on a global scale and is known to be linked with complications in the oral cavity, including gingivitis and periodontitis (4, 5). While gingivitis can be reversed, periodontitis damages the soft tissue and alveolar bone permanently, causing tooth mobility and, subsequently, tooth loss. Therefore, there is an urgent need to develop therapeutic interventions capable of halting this irreversible cascade of events in periodontitis.

Sclerostin, primarily secreted by osteocytes, inhibits bone formation by antagonizing the Wnt signaling pathway (6). Patients with genetic conditions characterized by inherited sclerostin deficiency exhibit high bone mass and a reduced risk of fractures (7, 8). In 2019, the FDA approved Evenity (romosozumab), a neutralizing anti-sclerostin antibody (Scl-Ab), for treating osteoporosis in postmenopausal women at high risk of bone fracture (9). Prior research has demonstrated that bones from type 1 diabetic mice exhibit increased expression of sclerostin in osteocytes (10), and that mRNA expression of Sost,
the gene encoding sclerostin, is higher in diabetic bones compared to non-diabetic ones (11). Although we did not detect changes in Sost expression in bone or circulating sclerostin in our recent study in T2D mice, transcriptome analysis demonstrated a profound decrease in Wnt signaling (12). Further, the restoration of bone mass, bone formation rate, and strength induced by anabolic ligands of the parathyroid hormone (PTH) 1 receptor teriparatide and abaloparatide (ABL) in T2D mice to control levels was accompanied by a reduction in Sost expression in bone, and ABL also reduced sclerostin levels in the circulation (12). It is established that in rodents, inhibition of sclerostin promotes osteoprogenitor proliferation and their recruitment to active bone surfaces, resulting in increased osteoblast number and activity (13). Scl-Ab was also shown to reactivate quiescent bone lining cells that reside on inactive bone surfaces and convert them into active osteoblasts (14). In addition, Scl-Ab inhibits bone resorption through activation of Wnt signaling and increased expression of the Wnt target gene osteoprotegerin (OPG) (15). Taken together, these findings raised the possibility that Scl-Ab would be beneficial in the context of diabetes. In fact, our recent study provided evidence that treatment with Scl-Ab reversed the bone loss induced by T2D in mice and corrected the changes in the diabetic bone signature at the tissue, cell, and molecular levels in vertebral and long bones (12). Further, previous studies showed that Scl-Ab reversed the low bone mass and delayed bone healing observed in diabetic Zucker Diabetic Fatty (ZDF) rats (16).

Heretofore, the preclinical and clinical studies with Scl-Ab have focused on the effects of the therapy on the bones of the axial and appendicular skeleton. In contrast, the effect of Scl-Ab on craniofacial bones or the oral cavity remained to be defined, thereby precluding
its application to oral complications of diabetes. In the current study, we investigated the effects of Scl-Ab on craniofacial tissues in healthy and T2D mice. We demonstrate that mice with nongenetic adult-onset T2D develop severe alveolar bone loss and periodontal soft tissue degeneration, mimicking the periodontal disease exhibited by T2D patients. Moreover, treating T2D mice with Scl-Ab increased alveolar bone volume, reversed the effects of T2D on remodeling by increasing osteogenic cells and decreasing osteoclasts, and completely rescued the bone loss. Remarkably, the Scl-Ab treatment elicited protective effects on the periodontal soft tissues as well, by promoting proliferation of PDL cells, increasing collagen fiber density, preserving extracellular matrix expression, and reducing inflammation. Despite the robust bone-anabolic response of the alveolar bone to Scl-Ab, other craniofacial sites were only minimally affected, with mild bone accretion occurring in the edentulous and mandibular bones and a minor effect on the premaxillary suture. These findings demonstrate the therapeutic potential of treatment with Scl-Ab to restore alveolar bone and reverse the periodontal disease induced by T2D.
RESULTS

T2D mice displayed elevated gingival inflammation and PDL degeneration.

Young adult mice were randomized into two groups (Figure 1A, first two groups): a control group fed a low-fat diet (LFD), and an experimental group fed a high-fat diet (HFD). After 4 weeks on the HFD, the experimental group received streptozotocin (STZ) injections to induce T2D, which was confirmed by non-fasting blood glucose measured 4 weeks later. All mice were maintained on their respective diets for an additional 4 weeks and treated with either a vehicle or anti-Scl antibody for another 4 weeks (Figure 1A). At the end of the experiment, mice with established T2D administered with a vehicle exhibited signs of gingival inflammation characterized by lymphocyte infiltration (Figure 1, B and C), increased CD45+ immune cell accumulation (Figure 1, D and E), and an elevated number of neutrophils compared with control mice (Figure 1, F and G). In addition to the inflamed gingiva, the PDL in T2D mice displayed reduced collagen fiber density (Figure 1, H-L) and decreased cell density (Figure 1, M-O). Although mitotic activity was low in both control and T2D mice (Figure 1, P-R), the PDL of T2D mice had more TUNEL+ cells, indicating increased apoptosis (Figure 1, S and T). These data suggest degeneration of the PDL linked to increased fibroblast apoptosis in T2D compared to control mice, where cell apoptosis was rare.

T2D mice displayed alveolar bone loss with elevated sclerostin expression.

We further evaluated the alveolar bone using micro-CT and found a decrease in alveolar bone height, along with substantial interradicular alveolar bone loss (Figure 2, A-D). This was substantiated by a microscopic examination of the maxillary bones (Figure 2, E and F). RUNX2-positive osteogenic cells, potentially osteoblasts or osteoprogenitors, were
reduced on the bone surface of T2D maxillary bone compared to controls (Figure 2, G-I). In contrast, osteoclast number was higher in T2D bones (Figure 2, J-L).

Examination of the PDL regions demonstrated an increase in eroded bone surface on the mesial side in the T2D group (Figure 2, M and N). Using RUNX2 and Osterix as markers for the osteoblast lineage and Cathepsin K as a marker for osteoclasts, we found that T2D PDL exhibited a reduction in the number of osteogenic cells (Figure 2, O-R) and an increase in the number of osteoclasts (Figure 2, S and T). Notably, T2D mice had fewer active beta-catenin-positive cells on the bone surface, indicating impaired Wnt signaling (Figure 2, U and V).

We examined the expression patterns of two Wnt inhibitors, sclerostin and Dickkopf-1 (DKK1). In control mice, sclerostin was expressed by osteocytes (Figure 2W). T2D mice displayed strong sclerostin expression around osteocytes in alveolar bone, with some PDL areas also positive (Figure 2X). Similarly, DKK1 expression was upregulated in T2D mice (Figure 2, Y and Z). These results demonstrate excessive Wnt inhibitor production by osteocytes in T2D mice, which may disrupt bone remodeling balance, favoring resorption.

Scl-Ab treatment completely reverses T2D-induced alveolar bone loss.

To investigate whether suppressing excessive sclerostin could reverse the detrimental periodontal effects of T2D, we administered Scl-Ab to T2D and control mice (Figure 1A). Scl-Ab treatment increased maxillary bone volume in control mice and completely reversed the decrease in alveolar bone volume induced by T2D (Figure 3, A-E; Supplemental Figure 1, A-E). Moreover, the basal bone, which provides structural support to the teeth, became thinner in the T2D mice (Supplemental Figure 1, F and G). However,
Scl-Ab treatment substantially thickened it in both control and T2D mice (Supplemental Figure 1, H-J). We also measured cementum-enamel junction to alveolar bone crest (CEJ-ABC) distance on both the palatal and buccal sides. The increased CEJ-ABC distance observed in the T2D group indicated alveolar bone height loss, which was entirely rescued by Scl-Ab treatment (Figure 3F).

Scl-Ab treatment promotes robust alveolar bone formation.

Histological analysis of the alveolar bone under the furcation area revealed that the marrow cavity was enlarged in the T2D group but markedly reduced in the Scl-Ab groups (Figure 4, A-C). In the T2D+Scl-Ab group, the bone and marrow space proportions were restored to those of the control group (Figure 4, A and D), demonstrating that Scl-Ab rescued the T2D-induced bone loss. Scl-Ab treatment strongly promoted bone accumulation in the vicinity of the bone marrow, as shown by Pentachrome staining (Figure 4, E-H). Alkaline phosphatase (ALP) staining confirmed the elevated bone formation activity around the bone marrow region in groups treated with Scl-Ab (Figure 4, I-L). We found fewer bone lining cells and osteoprogenitors in the bone marrow in the T2D group (Figure 4, M and N, quantified in Q). However, in the Scl-Ab groups, more RUNX2+ cells were found on the bone surface. Their morphology was cuboidal rather than flat, suggesting they were active bone-forming cells (Figure 4O). In the T2D+Scl-Ab group, a large number of RUNX2+ cells were also found on the bone surface (Figure 4P), demonstrating that Scl-Ab treatment promotes bone accumulation under T2D conditions. Consistent with the notion that Scl-Ab suppresses the function of sclerostin, Wnt signaling was elevated in bones from mice treated with Scl-Ab, as evidenced by the presence of active beta-catenin-positive cells (Figure 4, R-U, quantified in V).
A similar increase in the number of osteogenic RUNX2-positive cells was found on the edentulous ridge surface after Scl-Ab treatment (Supplemental Figure 2, A-H). Previously, we reported that mice carrying a null mutation in Sost (Sost−/−), the gene encoding sclerostin, exhibited a thicker edentulous ridge and midfacial hypoplasia (17). In the current study, Scl-Ab treatment increased the thickness of the edentulous ridge (Supplemental Figure 3, A and B) but had no notable effect on the premaxillary suture (Supplemental Figure 3, C-H) or facial length (Supplemental Figure 3, I and J). Sost−/− mice also displayed enlarged mandibles (17), mimicking the mandibular overgrowth in van Buchem disease/sclerosteosis patients (17). In the current study, four weeks of Scl-Ab treatment resulted in slightly thicker cortical bone (Supplemental Figure 4, A-D). Collectively, our data demonstrate that Scl-Ab exerts a strong anabolic effect on alveolar bone.

Treatment with Scl-Ab decreases bone resorption.

To further investigate the effects of Scl-Ab treatment on bone remodeling, we evaluated bone resorption activity across groups. Cathepsin K staining demonstrated increased osteoclast number in the T2D mice, which was reduced in both the bone marrow cavity and PDL area with Scl-Ab treatment (Figure 5, A-D). Tartrate-resistant acid phosphatase (TRAP) staining confirmed an increased number of osteoclasts on the bone facing the marrow of T2D mice. Treatment with Scl-Ab markedly decreased TRAP+ cells in both control and T2D mice (Figure 5, E-H, quantified in I). Similarly, an elevated number of TRAP+ cells were found on bone surfaces facing the PDL in T2D mice, which were markedly reduced after Scl-Ab treatment in both control and T2D mice (Figure 5, J-M,
quantified in N). Taken together, these findings indicate that Scl-Ab promotes bone formation while inhibiting bone resorption, resulting in rapid bone accumulation.

Scl-Ab treatment promotes PDL cell proliferation.

We next investigated the specific effects of Scl-Ab treatment on bone remodeling in the PDL area, where PDL cells actively participate in alveolar bone remodeling (18, 19). We found that active beta-catenin expression was increased in the PDL following Scl-Ab treatment (Figure 6, A-D). Numbers of RUNX2+ (Figure 6, E-H, quantified in I) and Osterix+ cells (Figure 6, J-M, quantified in N) decreased in the T2D PDL compared with controls, but Scl-Ab treatment increased both cell populations in the PDL. In T2D mice, the number of PDL cells was also reduced (Figure 6, O and P, quantified in S). Scl-Ab treatment increased PDL cells and completely rescued this loss in T2D mice (Figure 6, O-R, quantified in S). Using PCNA as a cell proliferation marker, we found cell proliferation was reduced in the T2D group but increased after Scl-Ab treatment (Figure 6, T-W, quantified in X). To account for differences in total PDL cells across groups, we calculated the percentage of Osterix+ and RUNX2+ cells (Figure 6Y). The results demonstrated that although the absolute numbers of Osterix+ and RUNX2+ cells varied, their proportions in PDL cells were similar across the four groups. In conclusion, blocking sclerostin with antibodies boosted Wnt signaling in the PDL, which preferentially promoted proliferation of PDL cells rather than differentiating cells along the osteogenic lineage.

Scl-Ab therapy stimulates PDL repair.

PDL, which connects the tooth to the alveolar bone, is structurally comprised of approximately 60% connective tissue fibers by volume. The PDL also contains various
cellular components, such as fibroblasts, epithelial cells, osteoblastic cells, and mesenchymal stem cells (20, 21). We investigated the integrity of the PDL and found that the PDL of control mice was covered with abundant and well-aligned collagen fibers, as evidenced by Picrosirus red staining (Figure 7A). In contrast, the number of fibers covering the PDL in T2D mice was substantially reduced (Figure 7B). Treatment of control mice with Scl-Ab had a minor impact on PDL fibers (Figure 7C); however, it markedly increased the number of fibers in the PDL of T2D mice (Figure 7D). Moreover, the expression of peristatin, a critical protein for PDL integrity and function (22), was notably decreased in T2D mice compared to control mice; and peristatin expression was well-preserved in T2D mice treated with Scl-Ab (Figure 7, E-H).

Patients with T2D exhibit inflammation in the periodontal tissues (23, 24). Consistently, we found accumulation of CD45+ immune cells in the PDL of T2D mice, which were substantially reduced with Scl-Ab treatment (Figure 7, I-L). Additionally, PDL of T2D mice contained more cells expressing the proinflammatory cytokine IL-6 compared to control mice, and Scl-Ab treatment decreased their abundance to levels similar to control mice (Figure 7, M-P). These data indicate Scl-Ab suppresses the elevated T2D-induced inflammation in the PDL, providing a favorable environment for PDL recovery. In summary, Scl-Ab stimulates PDL repair by promoting PDL cell proliferation and reducing inflammation in the PDL.

Since we observed gingival inflammation in the T2D mice (Figure 1), we investigated whether Scl-Ab treatment could mitigate this inflammation (Supplemental Figure 5, A-D). Scl-Ab treatment reduced the increased accumulation of CD45+ immune cells observed in T2D mice; however, levels remained higher compared to the control group.
Neutrophil levels remained elevated in both T2D mice and those treated with Scl-Ab compared to control mice (Supplemental Figure 5, J-N). These findings suggest that while Scl-Ab partially mitigates gingival inflammation in T2D mice, its effect is limited. Additionally, we examined cementum thickness. T2D did not notably impact cementum thickness in our mouse model. However, Scl-Ab treatment increased cementum thickness in the furcation area (Supplemental Figure 5, O-S).

DISSCUSSION

In this study, we utilized a nongenetic mouse model to mimic human adult-onset T2D. This HFD/STZ T2D model reproduces the effects of diabetes on the bones of the axial and appendicular skeletons (12). However, the periodontal phenotype has not been characterized. We revealed that, similar to diabetic patients, HFD/STZ-induced T2D mice display periodontal disorders, including severe alveolar bone loss, gingival inflammation, and PDL degeneration.

Consistent with previous evidence from bones of the axial or appendicular skeleton (10), we found elevated expression of sclerostin in alveolar bone of diabetic mice. The regulation of Sost transcription and sclerostin synthesis is complex and has been intensely investigated since the identification of the Sost gene through genetic linkage analysis in patients with sclerosteosis and van Buchem’s disease (7, 25). Sost transcription is controlled by a number of regulatory elements in its promoter region, as well as by epigenetic mechanisms (reviewed elsewhere (26)). Various transcription factors activated by cytokines, growth factors, or hormones have been implicated in the positive or negative regulation of Sost/Sclerostin. The regulation of Sost/sclerostin in the context of diabetes is not completely understood and likely results from the combined
effects of metabolic and hormonal changes induced by the disease in vivo. Notably, osteocytic cell lines cultured in media containing high concentrations of glucose exhibit elevated Sost mRNA and sclerostin protein expression (10, 27), strongly suggesting that glucose directly regulates Sost gene expression. Further studies are warranted to fully elucidate the mechanisms underlying the changes in Sost/sclerostin expression in diabetes.

Considering the dramatic increase in sclerostin-mediated Wnt inhibition in T2D, we explored the sclerostin-neutralizing monoclonal antibody in this T2D mouse model. Our data indicate that Scl-Ab completely reversed the detrimental effects of T2D on alveolar bone. Scl-Ab stimulated osteoprogenitors and suppressed osteoclasts, leading to the rapid formation of alveolar bone. Moreover, we observed PDL repair in the Scl-Ab-treated T2D group, as evidenced by an increase in PDL cell number and PDL fiber density, and a decrease in inflammation. Taken together, this study establishes a T2D mouse model with periodontal disease phenotype and demonstrates that Scl-Ab therapy effectively rescues the periodontal detriments of T2D.

HFD/STZ-induced adult-onset T2D mouse model.

The HFD/STZ-induced adult-onset T2D mouse model offers advantages for studying T2D-associated periodontal disease over commonly used genetic rodent models. While models like db/db mice (28-31) and ZDF rats (32-35) have provided insights into disease pathogenesis, they are limited by factors such as cost, lifespan, early-onset timing, and relevance to polygenic human T2D (36-39). In contrast, the HFD/STZ model better reflects the adult-onset and metabolic characteristics of human T2D (36, 40), making it a valuable tool for studying adult disease timelines and evaluating therapeutic compounds.
Our findings define the periodontal disease phenotype in this model, paving the way for future investigations into the mechanisms linking T2D to periodontitis and preclinical testing of therapeutic strategies against T2D-associated periodontal degeneration.

Scl-Ab and the craniofacial complex

Our study demonstrates the remarkable efficacy of Scl-Ab in promoting robust alveolar bone regeneration in our T2D mouse model (Figure 3). Notably, our findings reveal complete restoration of T2D-induced alveolar bone loss after only four doses of Scl-Ab. Scl-Ab acts by converting bone lining cells into osteoblasts (14), thereby activating quiescent surfaces for bone formation (Figure 4). While previous studies have shown alveolar bone recovery under experimental periodontitis (41), large alveolar bone injury (42), and tooth extraction and unloading conditions (43), our study demonstrated such extensive regeneration in a T2D context.

While genetic deficiency of sclerostin has been associated with mandibular overgrowth and midfacial defects (44), our study suggests that transient Scl-Ab treatment in adulthood may have minimal effects on craniofacial structures (Supplemental Figures 2-4) and cementum (Supplemental Figure 5). However, further investigation into potential craniofacial changes after prolonged Scl-Ab treatment is warranted.

Scl-Ab and PDL

Sclerostin inhibition positively impacts PDL health. Knockout of peristin, a key matrix protein of PDL, results in an early-onset periodontitis-like phenotype (45). In these peristin-null mice, deleting the Sost gene or blocking sclerostin by antibody substantially restored alveolar bone height and, more strikingly, improved the disorganized orientation of the PDL (18). Scl-Ab treatment in dentin matrix protein 1 (Dmp1) knockout mice also
greatly improved alveolar bone and PDL recovery. Although Dmp1 is not expressed in PDL, mice lacking Dmp1 display a severe defect in PDL (46). Thus, PDL degeneration may be secondary to the alveolar bone defect, and the PDL protective effect of Scl-Ab may be an indirect result of alveolar bone regeneration. A recent study using lineage tracing demonstrated that the activity of the PDL stem cells dramatically increased in Sost−/− mice (47), suggesting that sclerostin directly affects PDL cells. Our study discovered that Scl-Ab treatment stimulates PDL cell proliferation (Figure 6), which is necessary for PDL repair. We propose that Scl-Ab PDL regeneration involves both enhanced alveolar bone formation and activated PDL cell proliferation, stimulating Sharpey’s fiber restoration. Given that PDL and alveolar bone impairments contribute to most cases of adult tooth loss, the capacity of Scl-Ab therapy to regenerate both bone and PDL underscores its potential as a promising approach for periodontal tissue repair. Continued exploration of the molecular mechanisms underlying sclerostin inhibition will further inform the development of therapeutic strategies against periodontitis and tooth loss.

Conclusion

Using an adult-onset mouse model of established T2D, we demonstrated severe alveolar bone loss with gingival inflammation and PDL degeneration. Treatment with Scl-Ab completely reversed these deleterious effects of T2D on the periodontium, restored bone mass by promoting osteoblast activity while suppressing osteoclasts, and stimulated periodontium regeneration while minimally affecting other craniofacial structures.
MATERIALS AND METHODS

Sex as a biological variable

In this study, we exclusively used male mice due to previous findings indicating that males exhibit a more pronounced response to a high-fat diet and STZ treatment compared to females (48-50). While our findings provide insights into T2D-induced periodontitis and Scl-Ab as a treatment plan in male mice, future studies should investigate whether these findings extend to female mice.

Mouse model

The mice were housed in a temperature-controlled environment with 12-hour light/dark cycles and had ad libitum access to food and water. To induce T2D, twelve-week-old C57BL/6J male mice (The Jackson Laboratory) were randomly assigned to two groups. One group was fed a LFD comprising 10% kcal% fat (D12450J, Research Diet Inc.), while the other group was fed a HFD comprising 60% kcal% fat (D12492, Research Diet Inc.). Four weeks later, the HFD group received five daily injections of STZ (45 mg/kg dissolved in vehicle, MilliporeSigma), whereas the LFD group received vehicle (50 mM sodium citrate buffer, pH 4.5). Eight weeks later, T2D was fully developed (fasted blood glucose > 250 mg/dL), and half of the mice from each group received Scl-Ab treatment (100 mg/kg romosozumab) once a week for 4 weeks (12). The control and T2D groups were administered a vehicle (saline) at the same time. All mice were sacrificed at 28 weeks of age for periodontal analysis (Figure 1A).
Micro-CT analysis

The heads were scanned using a Skyscan 1176 (Bruker) with the following conditions: X-ray energy of 59 kV, pixel size of 9 µm, and a rotation of 0.3-degree. The scanned data were reconstructed as previously reported (51). To calculate bone volume (BV) and bone volume fraction (BV/TV), the alveolar bone in the furcation area of the maxillary first molars or mandibular first molars was measured by CTAn (Bruker). The regions of interest were previously described (17, 52). The CEJ-ABC distance underneath the disto-palatal cusp and disto-buccal cusp of the maxillary first molar was measured three times, and the average was taken. PDL width was measured by CTAn using the method we described before (53).

Sample preparation

The samples were decalcified with 0.5 M EDTA (pH 7.2) for 5 days. After decalcification, the specimens were dehydrated, cleared in xylene, and infiltrated with a xylene-paraffin mixture, followed by paraffin embedding. Sagittal sections with a thickness of six microns were cut and collected on positively charged slides.

H&E stain, Masson’s trichrome stain, and Pentachrome stain

The sections were deparaffinized and rehydrated before each staining. For H&E staining, we used the method described before (54). For Masson’s trichrome staining, the slides were stained with Weigert’s Iron Hematoxylin for 8 minutes, Biebrich Scarlet-Acid Fuchsin (#26367-04, Electron Microscopy Sciences) for 6 minutes, Phosphomolybdic acid-phosphotungstic acid (#26367-05, Electron Microscopy Sciences) for 15 minutes, and Aniline blue solution (#26367-06, Electron Microscopy Sciences) for 1 minute. The slides were then differentiated with 1% acetic acid for 5 minutes. For Pentachrome staining, the
slides were sequentially stained with 1% Alcian Blue, Orcein-Verhoeff working solution (prepared with Orcein, alcoholic hematoxylin, ferric chloride, and Lugol’s iodine), Woodstain Scarlet-Acid Fuchsin solution (#26385-07, Electron Microscopy Sciences), 5% phosphotungstic acid, and 3% Saffron solution. After staining, the slides were then dehydrated through graded ethanol, cleared with xylene, and mounted with Permount mounting media.

ALP and TRAP stain

Slides were deparaffinized and treated with a buffer (0.1 M Tris pH 9.0, 50 mM MgCl₂, 100 mM NaCl, and 0.1% Tween 20) at 37°C for 30 minutes. The slides were then incubated at 37°C with a solution containing BCIP (5-bromo-4-chloro-3-indolyl phosphate; Roche) and NBT (nitro blue tetrazolium chloride; Roche) to develop color. After a brief washing, the slides were counterstained with 0.1% nuclear fast red. The TRAP staining was performed as described before (55), and the slides were counterstained with 0.5% Methyl Green for 15 seconds. The slides for ALP and TRAP staining were dehydrated in a series of ethanol and xylene, then mounted with Permount mounting media.

Picrosirius Red stain

The slides were stained with 0.1% Sirius Red in saturated picric acid (#26357-02, Electron Microscopy Sciences) for an hour, followed by washing with 1% acetic acid. The slides were then dehydrated, mounted, and viewed under polarized light.

Immunohistochemistry

Immunohistochemistry staining was performed as described previously (56) using the following primary antibodies: anti-RUNX2 (ab192256, Abcam), active beta-catenin (#8814, Cell Signaling Technology), anti-Cathepsin K (ab300569, Abcam), anti-Osterix
(ab22552, Abcam), anti-PCNA (24036-1, Proteintech), anti-Periostin (19899-1, Proteintech), anti-CD45 (#70257, Cell Signaling Technology), anti-Myeloperoxidase (AF3667, R&D Systems), anti-IL-6 (AF406, R&D Systems), anti-sclerostin (AF1589, R&D Systems), anti-DKK1 (AF1765, R&D Systems). Goat anti-rabbit IgG (H+L) cross-adsorbed antibody (A21244, Invitrogen) and donkey anti-goat IgG (H+L) cross-adsorbed antibody (A21447, Invitrogen) were used as secondary antibodies.

Quantification

To quantify Picrosirius red+ PDL, Adobe Photoshop (version 22.4) was used. First, we selected the PDL area (between cementum and alveolar bone) using the magnetic lasso tool and recorded the number of pixels as the total pixels. Next, we copied the selected area to a new Photoshop file and used the magic wand tool to select the stained area. We recorded the number of pixels in the selected area as positive pixels. The results are reported as a percentage of positive pixels over the total pixels. To quantify RUNX2+/Osterix+ PDL cells, the positive cells were manually counted, and the PDL area was measured using Image J (NIH). The same method was used to quantify PDL cells. The results are expressed as the number of positive cells over the total area. The percentages of RUNX2+ PDL cells and Osterix+ PDL cells were also calculated. To quantify TRAP+ osteoclasts, positive cells were counted, and the bone surface length was measured by Image J. The results are reported as the number of positive cells over the length of the bone surface. To quantify RUNX2+ bone lining cells, the number of RUNX2+ cells along the bone surface was counted and normalized to the bone surface length, which was measured using Image J software. For quantification of active beta-catenin positive bone surface, both the active beta-catenin positive bone surface and the
total bone surface were measured using Image J and expressed as a percentage. To measure cementum thickness, the furcation area was selected, and measurements were taken randomly at multiple sites on each slide. The measurements were averaged to obtain the mean cementum thickness. A minimum of three stained sections were analyzed for each sample.

Statistical analysis

Results are presented as means ± standard deviation (SD). A 2-tailed Student’s t test was used to compare between the two groups. For comparisons involving more than two groups, a one-way ANOVA followed by Tukey's post-hoc test was employed. Prism 9 (GraphPad Software) was used for all statistical analyses. A P value less than 0.05 was considered significant.

Study approval

All animal procedures were conducted in accordance with guidelines set by the Institutional Animal Care and Use Committee at the University of Arkansas.

Data availability

Values for graphs in the figures and supplemental figures are provided in the Supporting Data Values file.
AUTHOR CONTRIBUTIONS

HT, XY, and TB designed the research. SF, TZ, NA, SM, DO, and XY performed data acquisition. HT and XY analyzed the data. XY drafted the manuscript. HT, SF, TZ, NA, SM, DO, XY, and TB critically revised the manuscript.

ACKNOWLEDGMENTS

This work was supported by the National Institute of Dental and Craniofacial Research (R00DE028585 to X. Y.), the Veterans Administration (I01BX002104 and IK6BX004596 to T.B.), the National Institutes of Arthritis and Musculoskeletal and Skin Diseases (R01AR059357 to T.B.), the Indiana University Health-Indiana University School of Medicine Strategic Research Initiative, the Ralph W. and Grace M. Showalter Research Trust and Indiana University School of Medicine, and the University of Arkansas for Medical Sciences College of Medicine Sturgis Endowment Grant.
Figure 1. T2D mice displayed elevated gingival inflammation and PDL degeneration.

(A) Schematic of the study design. (B and C) H&E staining shows the gingiva. (D and E) Immunostaining of CD45. (F and G) Immunostaining of the neutrophil marker myeloperoxidase (MPO). The orange dotted lines indicate the boundary between the epithelium and the underlying lamina propria. (H and I) H&E staining shows the PDL. (J and K) Picosirius red staining, viewed under polarized light. (L) Quantification of the Picosirius red positive PDL area (n = 8). P<0.01. (M and N) DAPI staining shows cells in the PDL. (O) Quantification of PDL cells from DAPI-stained slides (n = 8). P<0.001. (P and Q) Immunostaining of Ki67. (R) Quantification of Ki67+ PDL cells (n = 8). ns, not significant. (S and T) TUNEL staining shows cell apoptosis in the PDL. Yellow arrows indicate TUNEL+ apoptotic PDL cells. The white dashed lines indicate the boundary of PDL. The data were analyzed using the Student’s t test. Scale bar: 50 µm. Abbreviations: LFD, low-fat diet; HFD, high-fat diet; STZ, streptozotocin; T2D, type 2 diabetes; Scl-Ab, sclerostin antibody; pdl, periodontal ligament; b, bone; d, dentin.
Figure 2. T2D mice displayed alveolar bone loss with elevated sclerostin expression.

Representative 3-dimensional (3D) renderings of micro-CT scanning of (A) control and (B) T2D maxillae. Arrows indicate the distance from the cemento-enamel junction to the alveolar bone crest. (C and D) Representative 2D micro-CT transverse sections through the alveolar bone around the maxillary first molars. (E and F) H&E staining shows the periodontium in the control and T2D groups. (G and H) Immunostaining of RUNX2. Arrows indicate the bone surface that lacks RUNX2+ cells. (I) Quantification of RUNX2+ cells lining the bone surface (n = 8). P<0.001. (J and K) TRAP staining shows bone resorption activity. (L) Quantification of TRAP+ cells on the bone surface (n = 8). P<0.01. The data were analyzed using the Student’s t test. (M and N) H&E staining shows the alveolar bone on the mesial side. Arrows indicate the eroded bone surface. Immunostaining of (O and P) RUNX2, (Q and R) Osterix, (S and T) Cathepsin K, (U and V) active beta-catenin, (W and X) sclerostin, and (Y and Z) DKK1. Scale bar: 50 µm. Abbreviations: pdl, periodontal ligament; b, bone; m, marrow; d, dentin; c, cementum.
Figure 3. Scl-Ab treatment completely reverses T2D-induced alveolar bone loss. (A-D) Representative 2D micro-CT sections through the alveolar bone around the maxillary first molars. (E) Quantification of bone volume (BV) and the ratio of BV to tissue volume (TV) (n = 8). P<0.01; ns, not significant. (F) Quantification of the distance from CEJ to ABC (n = 8). P<0.001; ns, not significant. The data were analyzed using one-way ANOVA with Tukey post hoc tests. Abbreviations: Max 1st, maxillary first molar.
Figure 4. Scl-Ab treatment promotes robust bone formation. (A-D) H&E staining shows the alveolar bone under the furcation area. (E-H) Pentachrome staining shows the bone around the marrow cavity. (I-L) ALP staining shows bone formation activity around the marrow cavity. (M-P) Immunostaining of RUNX2. (Q) Quantification of RUNX2+ bone lining cells on the bone surface (n=8). P<0.0001. (R-U) Immunostaining of active beta-catenin. (V) Quantification of active beta-catenin positive bone surface (n=8). P<0.001; ns, not significant. The data were analyzed using one-way ANOVA with Tukey post hoc tests. Abbreviations: b, bone; M1, maxillary first molar; M2, maxillary second molar. Scale bars: 50 µm.
Figure 5. Treatment with Scl-Ab decreases bone resorption.

(A-D) Immunostaining of Cathepsin K shows osteoclasts in the maxillary first molar area. Dashed lines indicate the shape of the roots. (E-H) TRAP staining shows bone resorption in the bone marrow area. (I) Quantification of TRAP+ cells in the bone marrow area (n = 8). P<0.01. (J-M) TRAP staining shows bone resorption on the mesial sides of the periodontal bone surface. (N) Quantification of TRAP+ cells on the periodontal bone surface (n = 8). P<0.0001. The data were analyzed using one-way ANOVA with Tukey post hoc tests. Scale bar: 50 µm. Abbreviations: M1, maxillary first molar; pdl, periodontal ligament; b, bone.
Figure 6. Scl-Ab treatment promotes PDL cell proliferation. (A-D) Immunostaining of active beta-catenin. (E-H) Immunostaining of RUNX2. (I) Quantification of RUNX2+ cells in the PDL (n = 8). P<0.05; ns, not significant. (J-M) Immunostaining of Osterix. (N) Quantification of Osterix+ cells in the PDL (n = 8). P<0.05; ns, not significant. (O-R) H&E staining shows the PDL. (S) Quantification of PDL cells (n = 8). P<0.0001; ns, not significant. (T-W) Immunostaining of PCNA. (X) Quantification of PCNA+ cells (n = 8). P<0.01. (Y) Quantification of the percentages of RUNX2+ and Osterix+ PDL cells (n = 8). ns, not significant. The data were analyzed using one-way ANOVA with Tukey post hoc tests. Dotted lines indicate the demarcation between the PDL and alveolar bone or dentin/cementum. Scale bar: 50 µm. Abbreviations: r, roots; b, bone.
Figure 7. Scl-Ab therapy stimulates PDL repair.

(A-D) Picrosirius red staining, viewed under polarized light. (E-H) Immunostaining of periostin. (I-L) Immunostaining of CD45. (M-P) Immunostaining of IL-6. Scale bar: 50 µm. Abbreviations: pdl, periodontal ligament; b, bone; d, dentin. Dotted lines indicate the demarcation between the PDL and either alveolar bone or dentin/cementum.
References

