Outpatient COVID-19 convalescent plasma recipient antibody thresholds correlated to reduced hospitalizations within a randomized trial

Han-Sol Park, … , Sabra L. Klein, David J. Sullivan

JCI Insight. 2024. https://doi.org/10.1172/jci.insight.178460.

Graphical abstract

Find the latest version:

https://jci.me/178460/pdf
Outpatient COVID-19 convalescent plasma recipient antibody thresholds correlated to reduced hospitalizations within a randomized trial

1W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
2Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

3Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

4Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA

5Department of Medicine, Division of Hematology and Oncology, MedStar Washington Hospital Center, Washington DC, USA

6Division of Allergy and Immunology, Department of Medicine, NorthShore University Health System, Evanston, IL, USA

7Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA

8Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Texas Health Science Center, Houston, TX, USA

9Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA

10Department of Emergency Medicine, Rhode Island Hospital, Brown University, Providence, RI, USA

11Luminis Health, Annapolis, MD, USA

12Department of Medicine, Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, UT, USA

13Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
14 Department of Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, OH, USA

15 Department of Medicine, Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, AZ, USA

16 Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, CA, USA

17 Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA

18 Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, MA, USA

19 Nuvance Health, Danbury, CT, USA

20 Nuvance Health Danbury Hospital, Danbury, CT, USA

21 Nuvance Health Norwalk Hospital, Norwalk, CT, USA

22 Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, NY, USA

23 Ascada Research, Fullerton, CA, USA

24 Department of Medicine, Division of Infectious Diseases, University of California, Irvine, CA, USA

25 Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA

26 Department of Medicine, Division of Infectious Diseases, University of California, San Diego, CA, USA

27 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
28 Department of Medicine, Division of Infectious Diseases, Georgetown University Medical Center Washington DC, USA

29 Department of Neurology, Brain Injury Outcomes, Johns Hopkins University School of Medicine, Baltimore, MD, USA

30 Institute for Clinical and Translational Research Johns Hopkins University School of Medicine, Baltimore, MD, USA

31 Department of Ophthalmology Johns Hopkins University School of Medicine, Baltimore, MD, USA

32 Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

33 Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA

34 Chemistry-Biology Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore MD, USA

35 Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA

36 Department of Pathology and Laboratory Medicine, Northshore University Health System, Evanston, IL

37 Advanced Mammalian Biomanufacturing Innovation Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
These authors contributed equally: Han-Sol Park, Anna Yin, and Caelan Barranta, with order determined based on role in executing experiments, analyses, and manuscript writing.

These authors jointly supervised this work: Sabra Klein, David Sullivan

Abstract word count 250

All text: 8552 words

2 tables and 4 figures and

Supplement 4 tables and 6 figures

Abbreviations: CCP: COVID-19 convalescent plasma; RCT: randomized controlled trial.

Keywords: convalescent plasma; hospitalization; COVID-19; outpatients; randomized controlled trial; viral load.

Corresponding Authors David Sullivan can be contacted at dsulliv7@jhmi.edu or Sabra Klein at sklein2@jhu.edu; Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, 615 N. Wolfe St., Baltimore, MD 21205.
Conflict of Interest Statement

TG- Paid consultant and employee of Fenwal, a Fresenius Kabi company (2021-2023); Employee of Werfen (2023-present). AC- Scientific Advisory Board of Sabtherapeutics (cow-derived human immunoglobulins COVID-19 treatment and other infectious diseases) and Ortho Diagnostics Speakers Bureau; MAH-contracts from Gilead Sciences, Insmed, AN2 Therapeutics, AstraZeneca to the University of Cincinnati, outside the submitted work. EB- member of the FDA Blood Products Advisory Committee; SS reports research grants; F2G, Cidara, Ansun, Zeteo: personal fees as consultant, advisory board, data safety monitoring board member; Celltrion, Adagio, Immunome, Karius, Pfizer, Scynexis, Adamis, Karyopharm, Intermountain Health: Stock options: Immunome; CS: Centers for Disease Control and Prevention, Merck, Pfizer: Research Grants. All other authors report no relevant disclosures.

Role of Funding source

The study sponsors did not contribute to the study design, the collection, analysis, and interpretation of data, and the decision to submit the paper for publication.
ABSTRACT

BACKGROUND COVID-19 convalescent plasma (CCP) viral specific antibody levels that translate into recipient post-transfusion antibody levels sufficient to prevent disease progression is not defined.

METHODS This secondary analysis correlated donor and recipient antibody levels to hospitalization risk among unvaccinated, seronegative CCP recipients within the outpatient, double blind, randomized clinical trial that compared CCP to control plasma. The majority of COVID-19 CCP arm hospitalizations (15/17, 88%) occurred in this unvaccinated, seronegative subgroup. A functional cutoff to delineate recipient high versus low post-transfusion antibody levels was established by two methods: 1) analyzing virus neutralization-equivalent anti-Spike-receptor-binding-domain immunoglobulin G (anti-S-RBD IgG) responses in donors or 2) receiver operated curve (ROC) analysis.

RESULTS SARS-CoV-2 anti-S-RBD IgG antibody was volume diluted 21.3 fold into post-transfusion seronegative recipients from matched donor units. Viral specific antibody delivered approximated 1.2 mg. The high antibody recipients transfused early (symptom onset within 5 days) had no hospitalizations. A CCP recipient analysis for antibody thresholds correlated to reduced hospitalizations found a statistical significant association between early transfusion and high antibodies versus all other CCP recipients (or control plasma) with antibody cutoffs established by both methods-donor-based virus neutralization cutoff in post-transfusion recipients: (0/85; 0% versus 15/276; 5.6%) p=0.03 or ROC based cutoff: (0/94; 0% versus 15/267; 5.4%) p=0.01.
CONCLUSION In unvaccinated, seronegative CCP recipients, early transfusion of plasma units in the upper 30% of study donors antibody levels reduced outpatient hospitalizations. High antibody level plasma units, given early, should be reserved for therapeutic use.

Trial registration: NCT04373460

FUNDING Defense Health Agency and others.
INTRODUCTION

The SARS-CoV-2 specific antibody levels necessary to prevent infection or reduce hospitalization from mild outpatient COVID-19 or reduce deaths in those already hospitalized are likely to be different. For hospitalized patients, effective CCP antibody levels have been estimated from registries (1, 2), but comparable information is not available for outpatient usage. The high inter-laboratory variability with diverse SARS-CoV-2 serologic assays for binding or virus neutralization antibody levels creates further challenges (3, 4). Dilutional live or pseudovirus neutralization measures from 27 separate pre-alpha convalescent plasma collections varied in geometric means for 50% inhibition from 19 to 4,344 with a mean of 311(5). Separating protective antibody metrics in vaccinated people or COVID-19 convalescent plasma donors that are still therapeutic after dilution further adds to complexity. For example, influenza vaccinees in the 1970s with dilutional virus hemagglutination inhibition titer ≥1:40 prevented infection (6, 7), such that the World Health Organization set the threshold of protection at 1:40(8). Infants with Respiratory Syncytial Virus in two separate studies with neutralizing antibody titers over 1:256 are protected from hospitalizations (9, 10). However, therapeutic convalescent plasma would need to have 10-20 times the protective neutralization titer after a small plasma volume is diluted into a seronegative recipient.

CCP has proven effective by randomized controlled trials (RCT) in three phases of COVID-19-outpatient (5, 11), inpatient (12, 13) and those within 48 hours of invasive mechanical ventilation (14). Many RCTs were stopped prematurely, transfused low to no SARS-CoV-2
specific antibody or were given late too disease progression to have antibody antiviral action change the disease course(15). Early CCP transfusion with high levels of antibodies is effective.

We previously reported that outpatient transfusion randomized to CCP or control plasma in 1181 participants with pre-delta CCP reduced the risk of hospitalization by 54%(5). A prespecified analysis from the parent outpatient CCP RCT aimed to compare antibody levels in donor-recipient pairs to explore the association between antibody levels and prevention of hospitalizations in recipients. With 88% of post-transfusion COVID-19 hospitalizations (15 of 17 total) occurring among unvaccinated, seronegative outpatient recipients, we analyzed hospitalization risk among this group by comparing CCP recipients stratified by early or late treatment (i.e., \(\leq 5 \) versus \(>5 \) days from symptom onset) with antibody levels to demarcate pre-delta CCP for pre-omicron recipient thresholds for efficacy to reduce mild CoVID-19 hospitalizations.
RESULTS

Trial population

This secondary analysis includes the unvaccinated at screening subgroup to correlate donor and post-transfusion antibody levels with hospitalization. Transfusions spanned 16 months from June 3, 2020 to Oct 1, 2021 with last three month follow up after transfusion in January 2022. The unvaccinated seropositive rate was 21%. Among the seronegative, unvaccinated patients analyzed, 368 received control plasma and 366 received CCP with an average age of 44 years old. Both control and CCP arms were predominately female, obese (44% with BMI > 30), and had at least one pre-existing comorbidity (41%). All COVID-19-related hospitalizations in the CCP arm recipients (17 total) were among unvaccinated recipients—15 seronegative (88%) and 2 seropositive recipients (12%; Figure 1, Table 1). Excluded from this analysis were the 159 fully vaccinated with no hospitalizations, 58 partly vaccinated with one hospitalization and 199 unvaccinated seropositive with 7 hospitalizations.

CCP donor antibody levels

Approximately 40% of all potential CCP research study donors in the parent study were excluded due to low antibody levels. Unique transfusion units represented the upper 60% of all CCP pre-delta donors with a geometric mean (GM) anti-S-RBD IgG 1:6,741 titer (3,161 AUC). Donor plasma showed strong correlations between anti-S-RBD IgG and virus neutralization antibody (nAb) in dilutional titer and AUC (Figure 2A), as well as donor virus-specific anti-S-RBD IgG antibodies in ng/mL with anti-S-RBD IgG AUC (Supplemental Figure 1). We estimate that the total viral-specific anti-S-RBD IgG dose from donor into recipient is 1.2 mg based on a
transfusion volume of 200mL with a donor anti-S-RBD IgG GM of 5.1 µg/mL (200 mLx5.1mcg/mL=1200 mcg), indicating recipients have low post-transfusion antibody levels based on current dosing recommendation for CCP (Supplemental Figure 1, Supplemental Table 1).

Screen and post-transfusion antibody levels among unvaccinated, seronegative recipients

The dilution factor associated with the administration of approximately 200mL CCP was determined by comparing the GM of anti-S-RBD IgG AUC levels of matched donors to that of unvaccinated seronegative recipients. The donor anti-S-RBD IgG AUC GM (3,190) proportionately decreased by a factor of 21.3 when compared to the anti-S-RBD IgG AUC GM (149) for seronegative recipients AUC within 30 minutes of transfusion (Figure 2B). Similarly, 15 seronegative hospitalized CCP recipients had post-transfusion antibody levels 19 times lower than matched donors. The hospitalized and non-hospitalized unvaccinated, screened seropositive CCP participants had a post-transfusion GM anti-S-RBD-IgG 836 AUC, with those partly vaccinated at 4,204 AUC and those fully vaccinated breakthrough infection at 7,908 AUC (Figure 2C). The pre-transfusion antibody levels of unvaccinated seropositive participants increased with the days from symptom onset to transfusion (Supplemental Figure 2).

Post-transfusion recipient antibody benchmarks associated with hospitalization

Among seronegative control recipients, 7.6% (28/368) were hospitalized, which was higher than the 6.3% hospitalization rate among controls of the parent study that included vaccinated (full
and partial) and nonvaccinated, seropositive participants. Hospitalizations in all seronegative CCP recipients were 4.1% (15/366), slightly higher than the full study finding of 2.9%.

For this subgroup analysis, we estimated the antibody threshold levels correlated to protection from hospital progression in the CCP group for early and late transfusions—one based on binding antibody levels associated with functional virus neutralization (Figure 2) and another by RCDC analysis (Figure 3). For the functional cutoff based on virus nAb, we used a 40-fold dilution of virus nAb, like the correlate of infection protection previously reported for influenza(8). By plotting donor anti-S-RBD-IgG AUC against increasing 2-fold viral dilutions, we identified donor anti-S-RBD IgG 2,728 AUC as the upper limit of the 95% confidence interval of the GM at a 40-fold nAb titer (Figure 2A). After a 21.3 dilution, the post-transfusion threshold was calculated to be 128 AUC in recipients. These functional cutoffs delineate high versus low anti-S-RBD IgG levels at 2,728 and 128 AUC for donors and their matched unvaccinated, seronegative recipients, respectively. Recipient post-transfusion antibody levels were plotted by days between symptom onset to transfusion to correlate the functional cutoffs with hospitalization outcome (Figure 2D-E).

Virus neutralization-based correlate of protection from hospitalization in recipients

We observed zero hospitalizations among recipients transfused early (i.e., ≤ 5 days after symptom onset) with post-transfusion anti-S-RBD IgG levels above 128 AUC as compared to the other three CCP quadrants. Although the probability of hospitalization was lowest among recipients receiving early transfusion and high antibody levels above 128 AUC, this group did
not reach statistical significance when compared to the other quadrants by Firth’s logistic regression, potentially due to smaller sample sizes (Figure 2E; Supplemental Table 2).

Exploratory analysis with Fisher’s exact test revealed a significant association between early/high transfusion, as defined by the nAb-based method, with hospitalization status among other unvaccinated, seronegative CCP recipients (p=0.03), indicating a difference in probability of hospitalization between those with early/high CCP transfusion (0/85, 0%) and those early/low or late CCP (15/276, 5.6%). The early/high CCP compared to all controls (28/368, 7.6%; p=0.004) or early controls (18/167, 11.7%; p=0.0005) was even more significant (Supplemental Table 3).

ROC-based correlate of protection from hospitalization in recipients

As an alternative method for identifying antibody thresholds for early recipients, ROC analysis with maximum percent hospital reduction were used to determine the antibody threshold level for late transfusions. The red dotted line in RCDC demarcates early transfusion ROC 115 anti-S-RBD IgG AUC maximum while the late transfusion 380 AUC maximized hospitalization difference (Figure 3A). Hospitalization was reduced (0 of 94 hospitalized) with anti-S-RBD IgG 115 AUC (log10 of 2.06), while for recipients treated after 5 days from symptom onset, the antibody level for similar treatment efficacy (1 of 40) was anti-S-RBD IgG 380 AUC (log10 of 2.58; Figure 3B, Supplemental Table 4). A Firth’s logistic regression comparing CCP quadrants revealed that recipients receiving early transfusion with high post-transfusion antibody levels above anti-S-RBD IgG 115 AUC had the lowest probability of hospitalization, but this difference from other quadrants was not statistically significant (Figure 3C; Supplemental Table 2).
Exploratory analysis with Fisher’s exact test revealed a significant association between early/high transfusion, as defined by the RCDC-based method, with hospitalization status among unvaccinated, seronegative CCP recipients \((p=0.01)\), indicating a difference in probability of hospitalization between those with early/high transfusion \((0/94, 0\%)\) and those early/low or late CCP \((15/267, 5.4\%)\). The ROC early/high CCP compared to all controls \((28/368, 7.6\%; p=0.002)\) or early controls \((18/167, 11.7\%; p=0.0005)\) had greater significance \((\text{Supplemental Table 3})\).

Donor antibody-based correlate of protection from hospitalization

The early/high quadrant for donor plasma units based on the 2768 AUC \((1/88-1.1\%)\) was also found to be significantly different by Fishers exact test from all seronegative controls \((28/368-12\%)\) \((p<0.002)\) and early seronegative controls \((18/167-10.7\%)\) \((p<0.002; \text{Supplemental Table 3})\). Donor plasma antibody-based relative risk reduction is 86\% and absolute risk reduction is 6.5\%. Comparison of donor early/high units to early/low and both late CCP was not significant \((\text{Supplemental Table 3})\).

Nasal SARS-CoV-2 viral RNA copies at screening

Nasal viral load might independently determine risk of hospitalization. All unvaccinated individuals subsequently receiving either control plasma or CCP had indistinguishable screen (before plasma transfusion) nasal viral loads, regardless of subsequent hospitalization outcome \((\text{Table 1, Supplemental Figure 3A, B})\). Nasal viral loads of those receiving early transfusions were associated with higher viral loads compared to late transfusions, regardless of serostatus.
Longitudinal antibody kinetics following transfusion

Antibody levels at or beyond 14 days post-transfusion did not differ between CCP and control plasma recipients (Figure 4). Hospitalization status, but not treatment, affected antibody levels over time. The multivariable linear mixed-effects regression, adjusted for variant, age, sex, and BMI, showed no differences in antibody levels between CCP and control plasma recipients beyond 14 days post-transfusion (Figure 4, Table 2). There were neither sex, age, BMI, nor comorbidity differences in antibody levels between CCP and control groups. At the day 90 follow-up visit, anti-S-RBD IgG AUC levels were similar for control and CCP and increased during variant periods pre-alpha, alpha and delta as well as among fully vaccinated recipients (Supplemental Figure 5).
DISCUSSION

In this secondary analysis of our outpatient, double-blind, placebo-controlled trial of CCP to prevent hospitalizations, we documented that donor CCP in the top 30% by anti-spike antibody levels increased seronegative recipient antibody thresholds sufficiently to high cut-offs that when administered early within 5 days of symptom onset were effective in hospital reduction. Initial screen nasal viral loads did not impact hospital outcome.

At the start of the pandemic there were no evidence-based standards for CCP donor antibody levels. Most donor EUA qualification of high titer after February 2021 was based on anti-spike antibody levels rather than neutralizations. Diversity in methods used antibody quantification and the need for harmonization of assays across institutions became apparent (16, 17). Within our study, the donor binding anti-S-RBD IgG of 2,728 AUC corresponded to live virus neutralization of greater than 1:40 in donors, and if transfused within 5 days of COVID-19 symptom onset, reduced hospitalization. Initially, the FDA recommended donor plasma qualification for the outpatient CCP study under IND19725 as seropositive after a 1:320 dilution (5). CCP donors for the hospitalized Expanded Access Program from March to August 2020 in the USA reported more than ten-fold higher median virus neutralization, using the Broad Institute Plaque reduction neutralization test (D614G), of 1:525 (2). The outpatient C3PO study used microneutralization assay with a median 1:578 titer (18). The Argentina outpatient study used a CCP cutoff of 1:84 based on a surrogate virus neutralization test and segregating to upper half of donors improved outcome (19). The effective CONFIDENT trial used CCP with virus neutralization of greater than 1:160 representing the top 15% of Belgium donors in the
pre-delta time periods in those hospitalized and newly mechanically ventilated (14). While the lack of standardization impedes comparative virus neutralizations analysis, all studies highlight that utilizing donors with high titer virus neutralizing antibodies is critical for CCP effectiveness.

When CCP was first deployed in 2020, there were concerns that specific antibody administration to individuals in the early stages of COVID-19 could interfere with the development of endogenous immune responses (20). However, our findings show that transfusion of CCP, as compared to control plasma, was not associated with differences in the total antibody level immune response in recipients with convergence by day 14, reassuring for the immunological safety of CCP in humans. The C3PO convalescent plasma study also demonstrated no antibody level difference between CCP and saline infusions (18, 21).

Strengths of this study include the large participant population of 1181, well-characterized donor and recipient antibody levels measured by diverse metrics and overall trial effectiveness in hospital reduction that extended to subpopulations at risk of severe disease progression like diabetes, hypertension, obesity and increasing age. Limitations to the study include predominately SARS-CoV-2 naïve recipients enrolled prior to the Omicron variant who were largely unvaccinated such that the findings are only approximately applicable to immunocompromised patients or others who lack SARS-CoV-2 antibodies. Another limitation is the low number of seronegative participants transfused within 5 days of symptom onset with post-transfusion donor antibody levels above the geometric mean in our study population (approximately 100 participants). The study randomized participants to CCP and control
plasma, not early or late transfusions stratified by antibody level. The parent study was not powered to look at these stratified quadrants. While the influenza titer was set by the WHO at 1:40, this correlate of hospital protection still needs to be established for SARS-CoV-2 for different phases of COVID-19.

Our results provide evidence for the best use of CCP. In summary, our results support and confirm that for antibody therapy to be effective, sufficient levels of pathogen specific antibodies need administration early(15). The retrospective viral specific antibody levels measured in 19,000 donors used in the Convalescent Plasma Expanded Access Program measured RBD antibodies at 54 mcg/mL translating to 10 mg for 200 mL for the BARDA study(2). The mass amount of viral specific antibody needed for outpatient CCP efficacy (1.2 mg) in this study tenfold lower that the EAP study and importantly lower (100 to 1000 fold) than when mAbs were used at 150 mg to 2100 mg total IgG dose, which may reflect convalescent plasma synergy between the many antibody specificities and isotypes in the polyclonal response which bind multiple epitopes, cooperate in neutralization and utilize diverse constant region functionality. A mL of plasma has 11 mg per mL of total IgG antibody translating to 200 mL with 2200 mg or 2.2 grams of IgG. The average donor viral specific anti-S-RBD IgG of 1.2 mg is less than 0.1% of 2.2 gm. No hospitalizations were observed in those recipients treated within 5 days of symptom onset with these high antibody levels, indicating that this is the optimal dose and timing combination for effective CCP use. Early treatment alone is insufficient, as hospitalizations were still observed in the group treated within 5 days
with lower titer units, necessitating both early treatment and adequate antibody dosing for optimal efficacy.

Although our results are less relevant to COVID-19 in the fourth year of the pandemic when the majority of immunocompetent individuals have endogenous antibody from vaccination and/or infection, they are highly relevant to both the currently immunocompromised COVID-19 patients without functional SARS-CoV-2 antibodies or to future deployments of convalescent plasma for infectious disease emergencies. We advocate that CCP units reserved for therapy comprise greater antibody levels restricted to the upper 20-30% of all donors to protect against future variants (22-24) or a novel microbe. Doubling the volume to near 500 mL with two units of about 210 mL also increases antibody levels along with increasing titer.

When humanity faces its next pandemic, there is a high likelihood that convalescent plasma will be used again until better specific therapies become available. Our data provide a roadmap for optimal early, high dose (upper deciles) convalescent plasma deployment with future emergencies.
METHODS

Sex as a Biologic Variable

Our study examined male and female participants, with statistical comparisons between the sexes. Similar findings are reported for the sexes.

Study Design

This study is a follow-up secondary analysis to correlate donor and recipient antibody levels to hospital outcome within a large outpatient, double-blind, randomized clinical trial comparing CCP to control plasma at 23 centers throughout the United States from June 2020 through September 2021(5). Symptomatic adults (>18 years old) with a confirmed SARS-CoV-2 positive test, regardless of vaccination status or risk factors for severe COVID-19, were enrolled within 8 days of symptom onset. Over 5,000 recipient plasma samples were collected at pre-transfusion screening (D-1), 30 minutes post-transfusion (D0), and follow-up visits (D14, D28, D90)(25). This subgroup analysis was restricted to seronegative, unvaccinated CCP recipients. CONSORT reporting guidelines were utilized(26). Detailed methods are in the Supplement Appendix.

Study Donor Plasma

The study qualified donor plasma with SARS-CoV-2 positive antibodies after a 1:320 dilution under FDA IND 19725 protocol. After July 2021, the transfused plasma donor units met the existing FDA Emergency Use Authorization (EUA) criteria for high titer at EUROIMMUN arbitrary unit (AU) over 3.5. These donor units were previously characterized for full-length anti-Spike IgG geometric mean (GM) titers of 13,053, which corresponded with a more precise area under
the curve (AUC) geometric mean of 7938, equaling 243 BAU/mL using the international standards(5). The median neutralizing antibody (nAb) titer was 80, with a geometric mean titer of 58, and nAb AUC of 51, equaling GM 27 IU/mL(5). The commercial EUROIMMUN arbitrary units (AU) mean was 6 for the unique donor units(5).

Indirect anti-S-RBD ELISA

The anti-S-RBD ELISA was adapted from a published protocol(27). The anti-S-RBD IgG threshold for seronegativity was 180 titer or below. Serostatus was determined based on screening antibody levels. The seropositive anti-S-RBD IgG ELISA titers represent 3-fold dilutions from 540 to 393,660. Anti-S-RBD IgG dilutional titer and area under the curve (AUC) were quantified. The limit of detection (LOD) was calculated to be half of the lowest AUC for samples with detectable titer (≥1:20) and samples with undetectable titers (1:10) were set be half the LOD. The 96-well plates (Immulon 4HBX, Thermo Fisher Scientific-Cat#-3855) were coated with anti-S-RBD of the parent strain at a volume of 50 μL of 2 μg/mL diluted antigen in filtered, sterile 1 × PBS (Thermo Fisher Scientific) at 4°C overnight. The coating buffer was removed, and the plates were washed 3 times with 300 μL 1 × PBS plus 0.1% Tween-20 (PBST) wash buffer (Thermo Fisher Scientific) and then blocked with 200 μL PBST with 3% nonfat milk (milk powder, American Bio) by volume for 1 hour at room temperature. All plasma samples were heat-inactivated at 56°C on a heating block for 1 hour before use and diluted 1:2 in PBS. Negative control samples were prepared at 1:10 dilutions in PBST in 1% nonfat milk and plated at a final dilution of 1:100. A mAb against the SARS-CoV-2 Spike protein was used as a positive control (1:5000 dilution; Sino Biological, 40150- D001). Plasma samples were prepared in 3-fold serial dilutions starting at 1:20 in PBST.
in 1% nonfat milk. Blocking solution was removed, and 100 μL diluted plasma was added in duplicate to the plates and incubated at room temperature for 2 hours. Plates were washed 3 times with PBST wash buffer, and 50 μL of secondary antibody was added to the plates and incubated at room temperature for 1 hour. Antihuman secondary antibody, Fc-specific total IgG HRP (1:5000 dilution; Thermo Fisher Scientific, Invitrogen, A18823), was prepared in PBST plus 1% nonfat milk. Plates were washed, and all residual liquid was removed before the addition of 100 μL SIGMAFAST OPD (o-phenylenediamine dihydrochloride) solution (MilliporeSigma) to each well, followed by incubation in darkness at room temperature for 10 minutes. To stop the reaction, 50 μL 3M HCl (Thermo Fisher Scientific) was added to each well. The OD of each plate was read at 490 nm (OD490) on a SpectraMax i3 ELISA Plate Reader (BioTek Instruments). The positive cutoff value for each plate was calculated by summing the average of the negative values and 3 times the SD of the negatives. Limits of detection (LOD) were set to half the lowest AUC value at or below 20 titer. The anti-S-RBD IgG titer threshold for seronegative was 180 titer or below. The seropositive anti-S-RBD IgG ELISA titers represent 3-fold dilutions from 540 to 393,660.

Quantification of viral specific anti-RBD and anti-full-length spike in ng/mL

Quantitative antibody measurements were based on an electrochemical immunoassay protocol as previously published(28). A fusion protein of anti-human-IgG coupled to two invertases were used as the electrochemical reporter. Antibody concentrations in ng/mL were obtained by measuring the amount of glucose generated by the protein fusion during immunoassays, based on quantitative dose response-curves built using commercial anti-RBD, anti-NTD, and anti-S2
antibodies. The protocol was adapted to run on a 96-well plate (Nunc, ThermoScientific 262162). Each well was coated using 50 µL of either S-RBD or full spike protein solutions in PBS, at a concentration of 2.5 and 5.0 ng/mL, respectively. The coating was conducted overnight at 4°C. Wash buffer (WB) was prepared with 1X PBS, pH 7.4 (Fisher Chemical) plus 0.05% Tween (Fisher Bioreagents). Blocking buffer (BB) was prepared by dissolving casein (Fisher Chemical) at 5% w/v in WB. The incubation temperature for each step after coating was 25°C. After coating, the plates were washed three times with WB and then blocked with 200 µL BB for one hour. Then, the plates were washed three times with WB. This procedure was followed by a 30 minute incubation with 50 µL of patient plasma specimens diluted to 1% or 20% with BB, depending on titer levels. Each specimen was interrogated in triplicate. Positive controls (125 and 1,000 ng/mL) and calibration curves (0 to 5,000 ng/mL) for the S-RBD assay employed a commercial mAb against SARS-CoV-2 Spike Glycoprotein S1 (Abcam, ab273073) prepared in 1% or 20% control plasma (to account for both dilutions) diluted in BB. For the full spike protein assay, a 1:1:1 mAb mix against SARS-CoV-2 Spike Glycoprotein S1 (Abcam, ab273073), SARS-CoV-2 Spike S2 (Novus Biologicals, NBP3-07956), and SARS-CoV-2 Spike NTD (ACROBiosystems, SPD-S164) was diluted similarly as for the S-RBD alone. After specimen incubations and washing three times with WB, 50 µL of 0.02 µM of LC15 antibody-invertase fusion protein in BB were added with an incubation time of one hour. The plates were washed three times with WB and once with 1X PBS, pH 7.4. This was followed by a one hour-long incubation with 50µL of 100 mM sucrose (Fisher Chemical) in 1X PBS, pH 5, with glucose concentration measured immediately after using a medical-grade glucometer (Nova Biomedical). Calibration curves were analyzed via nonlinear regression of the Hill isotherm (Igor Pro 8 software) and used to
calculate the antibody concentration from the average glucose concentration of each plasma sample.

SARS-CoV-2 Viral Copy Quantification

Nasopharyngeal specimens obtained at screening were stored in 5 mL of virus transport media at -70°C on site, then shipped to the central storage facility at JHU. RNA was extracted from 200 μL transport media with either the Qiagen viral RNA extraction kit (Qiagen, Hilden, Germany), or the Chemagic Viral DNA/RNA 300 kit 96 (Perkin Elmer, Sheldon CT, USA) followed by real-time reverse transcriptase quantitative PCR (RT-qPCR) assays targeting the SARS-CoV2 nucleocapsid (N) gene and the human RNaseP gene using methods described by the US CDC(29).

SARS-CoV-2 Virus Neutralization Assay

Plasma neutralizing antibodies were determined against WA-1 (SARS-CoV-2/USA-WA1/2020 EPI_ISL_404895), obtained from BEI Resources, as described previously(30, 31). The limit of viral neutralization detection was at 1:10 titer.

Statistical analysis

The comparative analysis of anti-S-RBD IgG antibody levels involved calculating the ratio between unique CCP donors and post-transfusion seronegative, unvaccinated recipients. This calculation was performed by dividing the geometric mean (GM) of the area under the curve (AUC) values for donor samples by the corresponding AUC values for the CCP recipients.
We determined correlates of protection based on donor anti-S-RBD IgG levels using two methods: one relying on virus neutralization and the other employing receiver operating characteristic (ROC) analysis. In the first approach, we established a functional cutoff value for binding antibody levels through virus neutralization to distinguish between high and low donor anti-S-RBD IgG AUC levels. It is noteworthy that a virus neutralization antibody at a 1:40 dilutional titer has been previously identified as a correlate of protection in influenza studies (6-8). Initially, we computed the upper limit of the 95% confidence interval for the donor anti-S-RBD IgG AUC geometric mean, corresponding to a donor neutralizing antibody at a 1:40 dilutional titer. The geometric mean was found to be 2,291 AUC, with a lower limit of 1,924 and an upper limit of 2,728 AUC. Considering that the antibody levels of seronegative CCP recipients were approximately 21.3 times lower than those of their respective donors, we extrapolated the functional cutoff point for CCP recipients to be 21.3 times lower than that of donors, resulting in a value of 128 AUC.

Reverse cumulative distribution curves (RCDC) curves were plotted (32) for control and CCP recipients anti-S-RBD post-transfusion ROC analysis. An estimated optimal threshold value from the ROC curve maximizing sensitivity and specificity determined the antibody threshold level for early transfusion. For late transfusions, the maximum percent hospital reduction defined the antibody threshold level.

Spearman correlations were used to evaluate strength of association between titer and AUC units for antibody measurements. The predicted probabilities of hospitalization based on early versus late and high versus low categories were assessed using a Firth’s logistic regression model, chosen due to complete separation in the dataset. Statistical association between
hospitalization status and early/high transfusion was assessed by Fisher’s exact test.

Comparisons across groups were performed using Kruskall-Wallis multiple comparisons with Dunn’s post-hoc corrections. We analyzed the antibody kinetics over time among unvaccinated, seronegative recipients using a linear mixed-effects regression model, adjusted for variant, age, sex, and BMI, with anti-S-RBD IgG log_{10} (AUC) data. An interaction term was included to examine how antibody levels changed over time by treatment (control or CCP) and hospitalization status. Predicted effects were graphed with 95% confidence intervals. P-values less than 0.05 were considered statistically significant. Analyses were performed using GraphPad Prism 8 (GraphPad Software) or Stata 17 (StataCorp).

Study Approval

Johns Hopkins University (JHU) served as the single-IRB (sIRB). For the Center for American Indian Health sites, the protocol was also independently reviewed and approved by the Navajo Nation Health Human Research Review Board and the Indian Health Service IRB. The protocol was also approved by the Department of Defense (DoD) Human Research Protection Office (HRPO). The trial was conducted in accordance with the principles of the Declaration of Helsinki, the Good Clinical Practice guidelines of the International Council for Harmonization, and all applicable regulatory requirements. Written and signed informed consent were obtained from all participants. The trial was registered on clinical trials.gov- NCT04373460.

Data Availability
Data is available from authors upon request with reply expected in 14 days. All data within graphs are contained within the Supporting Data Values file. Deidentified data from clinical trial has been deposited in the Vivli server (compliant with General Data Protection Regulations) for public access. Users either can access the Vivli data by downloading it or have access to a remote desktop workspace in a secure virtual research environment (https://vivli.org/resources/requestdata/).

Code Availability

Unique software or computational code was not created for this study.

Author Contributions

These co-first authors contributed equally: Han-Sol Park, Anna Yin, and Caelan Barranta, with order determined based on role in executing experiments, analyses, and manuscript writing.

Acknowledgements

Funding

Supported by a contract (W911QY2090012, to Dr. Sullivan) with the Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense of the Department of Defense, in collaboration with the Defense Health Agency; Bloomberg Philanthropies; the State of Maryland; a grant (3R01AI152078-01S1, to Dr. Casadevall) from the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID); a grant (U24TR001609-S3, to Dr. Hanley) from the NIH National Center for Advancing Translational Sciences; a grant (1K23HL151826NIH, to Dr. Bloch) from the National Heart, Lung, and Blood Institute; the Division of Intramural Research, NIAID, NIH; the Mental Wellness Foundation; the Moriah Fund; Octapharma; the Healthnetwork Foundation; and the Shear Family Foundation.

Convalescent plasma collection study at NorthShore was supported by the NorthShore Research Institute, including a donation from the Rice Foundation. The study sponsors did not contribute to the study design, the collection, analysis, and interpretation of data, and the decision to submit the paper for publication.
Acknowledgement

We thank all the trial participants who generously gave of their time and donated biologic specimens. We thank Dr. Geeta Sood for a critical review of the manuscript.
REFERENCES

Table 1. Unvaccinated control and convalescent plasma recipient demographics and comorbidities.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Control</th>
<th>CCP</th>
<th>Control Early</th>
<th>Control Late</th>
<th>CCP Early</th>
<th>CCP Late</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>964</td>
<td>479</td>
<td>485</td>
<td>207</td>
<td>272</td>
<td>210</td>
<td>275</td>
</tr>
<tr>
<td>Age, mean (SD)</td>
<td>44 (14)</td>
<td>45 (14)</td>
<td>43 (14)</td>
<td>45 (14)</td>
<td>45 (14)</td>
<td>43 (14)</td>
<td>44 (15)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>545 (57)</td>
<td>283 (59)</td>
<td>262 (54)</td>
<td>115 (56)</td>
<td>168 (62)</td>
<td>113 (54)</td>
<td>149 (54)</td>
</tr>
<tr>
<td>Male</td>
<td>419 (43)</td>
<td>196 (41)</td>
<td>223 (46)</td>
<td>92 (44)</td>
<td>104 (38)</td>
<td>97 (46)</td>
<td>126 (46)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>33 (3)</td>
<td>16 (3)</td>
<td>17 (4)</td>
<td>12 (6)</td>
<td>4 (1)</td>
<td>4 (2)</td>
<td>13 (5)</td>
</tr>
<tr>
<td>Black</td>
<td>136 (14)</td>
<td>63 (13)</td>
<td>73 (15)</td>
<td>27 (13)</td>
<td>36 (13)</td>
<td>26 (12)</td>
<td>47 (17)</td>
</tr>
<tr>
<td>American Indian</td>
<td>16 (2)</td>
<td>8 (2)</td>
<td>8 (2)</td>
<td>6 (3)</td>
<td>2 (1)</td>
<td>3 (1)</td>
<td>5 (2)</td>
</tr>
<tr>
<td>Pacific Islander</td>
<td>4 (0)</td>
<td>2 (0)</td>
<td>2 (0)</td>
<td>1 (0)</td>
<td>1 (0)</td>
<td>0 (0)</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Not reported</td>
<td>4 (0)</td>
<td>7 (1)</td>
<td>9 (2)</td>
<td>4 (2)</td>
<td>3 (1)</td>
<td>6 (3)</td>
<td>3 (1)</td>
</tr>
<tr>
<td>White</td>
<td>759 (79)</td>
<td>383 (80)</td>
<td>376 (78)</td>
<td>157 (76)</td>
<td>226 (83)</td>
<td>171 (81)</td>
<td>205 (75)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>143 (15)</td>
<td>72 (15)</td>
<td>71 (15)</td>
<td>37 (18)</td>
<td>35 (13)</td>
<td>33 (16)</td>
<td>38 (14)</td>
</tr>
<tr>
<td>BMI Category, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI <30</td>
<td>542 (56)</td>
<td>261 (54)</td>
<td>281 (58)</td>
<td>112 (54)</td>
<td>149 (55)</td>
<td>122 (58)</td>
<td>159 (58)</td>
</tr>
<tr>
<td>BMI ≥30</td>
<td>422 (44)</td>
<td>218 (46)</td>
<td>204 (42)</td>
<td>95 (46)</td>
<td>123 (45)</td>
<td>88 (42)</td>
<td>116 (42)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>242 (25)</td>
<td>117 (24)</td>
<td>125 (26)</td>
<td>52 (25)</td>
<td>65 (24)</td>
<td>55 (26)</td>
<td>70 (25)</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>85 (9)</td>
<td>47 (10)</td>
<td>38 (8)</td>
<td>19 (9)</td>
<td>28 (10)</td>
<td>13 (6)</td>
<td>25 (9)</td>
</tr>
<tr>
<td>Asthma, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td>110 (11)</td>
<td>59 (12)</td>
<td>51 (11)</td>
<td>25 (12)</td>
<td>34 (13)</td>
<td>24 (11)</td>
<td>27 (10)</td>
</tr>
<tr>
<td>HIV, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV</td>
<td>23 (2)</td>
<td>12 (3)</td>
<td>11 (2)</td>
<td>4 (2)</td>
<td>8 (3)</td>
<td>6 (3)</td>
<td>5 (2)</td>
</tr>
<tr>
<td>Pregnancy, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnancy</td>
<td>2 (0)</td>
<td>0 (0)</td>
<td>2 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (0)</td>
<td>1 (0)</td>
</tr>
<tr>
<td>Hospitalizations, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total unvaccinated</td>
<td>53 (6)</td>
<td>36 (8)</td>
<td>17 (4)</td>
<td>24 (12)</td>
<td>12 (4)</td>
<td>5 (2)</td>
<td>12 (4)</td>
</tr>
<tr>
<td>Seronegative</td>
<td>46 (5)</td>
<td>31 (6)</td>
<td>15 (3)</td>
<td>20 (10)</td>
<td>11 (4)</td>
<td>5 (2)</td>
<td>10 (4)</td>
</tr>
<tr>
<td>Seropositive</td>
<td>7 (1)</td>
<td>5 (1)</td>
<td>2 (0)</td>
<td>4 (2)</td>
<td>1 (0)</td>
<td>0 (0)</td>
<td>2 (0)</td>
</tr>
<tr>
<td>Serostatus at Screen, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seronegative</td>
<td>734 (76)</td>
<td>368 (77)</td>
<td>366 (75)</td>
<td>167 (81)</td>
<td>201 (74)</td>
<td>173 (82)</td>
<td>193 (70)</td>
</tr>
<tr>
<td>Seropositive</td>
<td>199 (21)</td>
<td>92 (19)</td>
<td>107 (22)</td>
<td>30 (14)</td>
<td>62 (23)</td>
<td>34 (16)</td>
<td>73 (27)</td>
</tr>
<tr>
<td>No screen bloods</td>
<td>31 (3)</td>
<td>19 (4)</td>
<td>12 (2)</td>
<td>10 (5)</td>
<td>9 (3)</td>
<td>3 (1)</td>
<td>9 (3)</td>
</tr>
<tr>
<td>Viral Copies, GM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viral</td>
<td>8,718</td>
<td>7,389</td>
<td>10,245</td>
<td>17,660</td>
<td>3,817</td>
<td>35,698</td>
<td>3,834</td>
</tr>
<tr>
<td>Hospitalized</td>
<td>6,346</td>
<td>4,770</td>
<td>10,501</td>
<td>7,114</td>
<td>2,145</td>
<td>65,686</td>
<td>4,892</td>
</tr>
<tr>
<td>Non-Hospitalized</td>
<td>8,872</td>
<td>7,627</td>
<td>10,235</td>
<td>19,641</td>
<td>3,909</td>
<td>35,144</td>
<td>3,788</td>
</tr>
</tbody>
</table>
Table 2 Longitudinal comparisons of unvaccinated, screened seronegative hospitalized and non-hospitalized recipients by treatment group. Plasma anti-S-RBD IgG (AUC, log_{10}) levels were compared between non-hospitalized and hospitalized recipients at 0 (D0), 14 (D14), and 28 (D28) days after transfusion of control plasma or convalescent plasma (CCP) by linear mixed-effect regression analysis, controlling for age, biological sex, BMI, and variant. The differences between non-hospitalized and hospitalized within treatment group, and vice versa, are shown with p-values < 0.05 considered significant.

<table>
<thead>
<tr>
<th>Group</th>
<th>Comparison</th>
<th>Timepoint</th>
<th>Contrast</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP</td>
<td>Hospitalized vs. Non-Hospitalized</td>
<td>D0</td>
<td>-0.027</td>
<td>0.909</td>
</tr>
<tr>
<td>Control</td>
<td>Hospitalized vs. Non-Hospitalized</td>
<td>D0</td>
<td>-0.180</td>
<td>0.313</td>
</tr>
<tr>
<td>Hospitalized</td>
<td>CCP vs. Control</td>
<td>D0</td>
<td>1.512</td>
<td><0.001</td>
</tr>
<tr>
<td>Non-Hospitalized</td>
<td>CCP vs. Control</td>
<td>D0</td>
<td>1.359</td>
<td><0.001</td>
</tr>
<tr>
<td>CCP</td>
<td>Hospitalized vs. Non-Hospitalized</td>
<td>D14</td>
<td>0.971</td>
<td><0.001</td>
</tr>
<tr>
<td>Control</td>
<td>Hospitalized vs. Non-Hospitalized</td>
<td>D14</td>
<td>0.779</td>
<td><0.001</td>
</tr>
<tr>
<td>Hospitalized</td>
<td>CCP vs. Control</td>
<td>D14</td>
<td>0.173</td>
<td>0.604</td>
</tr>
<tr>
<td>Non-Hospitalized</td>
<td>CCP vs. Control</td>
<td>D14</td>
<td>-0.018</td>
<td>0.792</td>
</tr>
<tr>
<td>CCP</td>
<td>Hospitalized vs. Non-Hospitalized</td>
<td>D28</td>
<td>0.766</td>
<td>0.004</td>
</tr>
<tr>
<td>Control</td>
<td>Hospitalized vs. Non-Hospitalized</td>
<td>D28</td>
<td>0.623</td>
<td>0.003</td>
</tr>
<tr>
<td>Hospitalized</td>
<td>CCP vs. Control</td>
<td>D28</td>
<td>0.132</td>
<td>0.689</td>
</tr>
<tr>
<td>Non-Hospitalized</td>
<td>CCP vs. Control</td>
<td>D28</td>
<td>-0.012</td>
<td>0.868</td>
</tr>
</tbody>
</table>
Figure 1. CONSORT diagram depicting enrollment, allocation, and analysis flow of recipients.

5,916 COVID-19 outpatients assessed for eligibility at 23 sites

4,961 excluded
3,254 did not meet inclusion criteria
793 had symptoms 8+ days prior
650 expected to be hospitalized within 24hr
2,366 had other reasons
882 declined to participate

1,225 randomized with 1:1 allocation
Central web system with permuted block sequence & stratified by site and participant age

615 assigned to receive control plasma
589 received control
26 did not receive control

589 were included in the modified ITT

479 were unvaccinated
31 were partly vaccinated
79 were fully vaccinated

368 were screen seronegative
92 were screen seropositive
19 without screen blood

610 assigned to receive CCP
592 received CCP
18 did not receive CCP

592 included in modified ITT

485 were unvaccinated
27 were partly vaccinated
80 were fully vaccinated

366 screen seronegative
107 were screen seropositive
12 without screen blood
Figure 2. CCP donor neutralizing antibody and anti-S-RBD levels establish a functional cutoff associated with hospitalization protection in screened seronegative recipients.

(A) Here, we use the 1:40 dilutional titer for nAb to identify the upper limit level of donor anti-S-RBD IgG 2728 AUC associated with protection from hospitalization. 1:10 dilutional titer is the limit of detection for nAb.

(B) Ratio of matched donor anti-S-RBD IgG AUC to that of their respective CCP seronegative recipients that was used to infer the functional cutoff in recipients was determined to be 21.3. Red dots correspond to those hospitalized and black dots are those not hospitalized.

(C) Anti-S-RBD IgG AUC levels among donors and post-transfusion recipients segregated by screen vaccination status and serostatus compared by Kruskall-Wallis with Dunn's post-hoc corrections, *p<0.033, **p<0.002, ***p<0.001. Unvaccinated subsequently hospitalized (red dots) post transfusion recipients in screen seronegative (n=15) and screen seropositive (n=2). Black dots are donors and blue dots are nonhospitalized participants.

(D) Screen seronegative, unvaccinated recipient D0 (post-transfusion) antibody (n=361) segregated by recipient days from symptom onset to transfusion and high (>128 AUC) or low (≤ 128 AUC) anti-S-RBD IgG levels. Recipient high and low cutoffs were calculated using a 21.3-fold drop from donor anti-S-RBD AUC (upper value of the 95% confidence interval) at a 1:40 nAb titer associated with protection. Subsequently hospitalized (red dot) and non-hospitalized (blue dot) recipients are shown. Ns and percents in each quadrant are the proportion hospitalized among quadrant total.

(E) Predicted probabilities of hospitalization across early vs. late and high (>128 AUC) vs. low (≤ 128 AUC) anti-S-RBD IgG categories of screen seronegative, unvaccinated CCP recipients were compared using Firth logistic regression model adjusted for age, sex, BMI, and variant. P-values that the predicted probability is >0% (horizontal dashed line) are shown, with p<0.05 considered significant.
Figure 3. CCP recipient D0 post-transfusion and matched donor antibody levels stratified by duration from symptom onset to transfusion using cutoffs established by the ROC and maximum antibody threshold method.

(A) RCDCs illustrating antibody distribution of early and late CCP recipients and placebo controls, and thresholds (red dashed lines), established by the maximum antibody that best distinguished hospitalized from non-hospitalized cases. Early recipients are delineated at 2.06 log10 anti-S-RBD AUC (115 AUC) while late recipients are delineated at 2.58 log10 anti-S-RBD AUC (380.2 AUC). Curves exclude five early and one late control participant(s) whose post-transfusion plasma was not available. Ns shown are CCP recipients (n=171 early, n=190 late) plus placebo recipients (n=161 early, n=200 late).

(B) Screen seronegative, unvaccinated recipient D0 post-transfusion antibody (n=361) segregated by early versus late administration assessed as days from symptom onset to transfusion and high versus low antibody using early/late stratum-specific cutoffs established by the maximum antibody that best distinguished hospitalized from non-hospitalized cases. Subsequently hospitalized (red) and non-hospitalized (blue) recipients are shown. Ns and percents in each quadrant are the proportion hospitalized among quadrant total.

(C) Predicted probabilities of hospitalization across early vs. late and high vs. low categories among screen seronegative, unvaccinated CCP recipients estimated using Firth logistic regression adjusted for age, sex, BMI, and variant. P-values that the predicted probability is >0% (represented by the horizontal dashed line) are shown for each category, with p<0.05 considered significant.
Figure 4. Antibody levels over three months post-transfusion by hospitalization status and treatment group for screen seronegative, unvaccinated recipients. Log_{10}-transformed antibody levels up to 90 days post-transfusion were segregated by treatment and hospitalization status of recipients using a linear mixed effects regression model, adjusted for variant, age, sex, and BMI. CCP recipients have greater AUC levels on D0, but by D14, the hospitalized recipients have greater AUC levels than non-hospitalized. The average days from transfusion to hospitalization was 3.05 days, with all post-transfusion hospitalizations occurring between D0 and D14. The dashed line represents the log-transformed cutoff (1.924) for seropositivity. This diagnostic threshold is equivalent to the anti-S-RBD IgG log_{10}-transformed 180 titer.