Understanding the treatment benefit of hyperimmune anti-influenza intravenous immunoglobulin (Flu-IVIG) for severe human influenza

Hillary A. Vanderven, … , James D. Neaton, Stephen J. Kent

BACKGROUND. Antibody-based therapies for respiratory viruses are of increasing importance. The INSIGHT006 trial administered anti-influenza hyperimmune intravenous immunoglobulin (Flu-IVIG) to patients hospitalised with influenza. Flu-IVIG treatment improved outcomes in patients with influenza B but showed no benefit for influenza A.

METHODS. To probe potential mechanisms of Flu-IVIG utility, sera collected from patients hospitalised with influenza A or B viruses (IAV or IBV) were analysed for antibody isotype/subclass and Fc-gamma receptor (FcgR) binding by ELISA, bead-based multiplex and NK cell activation assays.

RESULTS. Influenza-specific FcgR binding antibodies were elevated in Flu-IVIG infused IBV- and IAV-infected patients. In IBV-infected participants (n = 62), increased IgG3 and FcgR binding were associated with more favourable outcomes. Flu-IVIG therapy also improved the odds of a more favourable outcome in patients with low levels of anti-IBV Fc-functional antibody. Higher FcgR binding antibody was associated with less favourable outcomes in IAV-infected patients (n = 50), and Flu-IVIG worsened the odds of a favourable outcome in participants with low levels of anti-IAV Fc-functional antibody.

CONCLUSION. These detailed serological analyses provide insights into antibody features and mechanisms required for a successful humoral response against influenza, suggesting that […]

Find the latest version:

https://jci.me/167464/pdf
Understanding the treatment benefit of hyperimmune anti-influenza intravenous immunoglobulin (Flu-IVIG) for severe human influenza

Hillary A Vanderven, Deborah N Wentworth, Win Min Han, Heidi Peck, Ian Barr, Richard T Davey, Jr., John Beigel, Dominic Dwyer, Mamta Jain, Brian Angus, Christian Brandt, Analia Mykietiuk, Matthew G Law, Jim D Neaton, and Stephen J Kent for the INSIGHT FLU-IVIG Study Group

1 Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Queensland, Australia;
2 Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Queensland, Australia;
3 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia;
4 Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA;
5 The Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales, Australia;
6 WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia;
7 National Institute of Allergy and Infectious Disease (NIAID), Bethesda, Maryland, USA;
8 New South Wales Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, Australia;
9 University of Texas Southwestern Medical Center, Dallas, Texas, USA;
10 Nuttfield Department of Medicine, Oxford University, Oxford, OX39DU, United Kingdom;
11 Sjællands Universitets Hospital, Roskilde, Denmark;

12 Instituto Médico Platense, Buenos Aires, Argentina;

13 Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Carlton, Victoria, Australia.

*Co-corresponding authors:

Hillary Anne Vanderven PhD, College of Public Health Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Queensland, Australia. Phone: 61747816799. Email: hillary.vanderven@jcu.edu.au.

Prof Stephen John Kent, MD, PhD, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia. Phone: 61383449939. Email: skent@unimelb.edu.au.

Conflict of interest statement:
The authors have declared that no conflict of interest exists.

Abstract word count: 236 words

Manuscript word count: 10,794 words
Abstract

Background: Antibody-based therapies for respiratory viruses are of increasing importance. The INSIGHT006 trial administered anti-influenza hyperimmune intravenous immunoglobulin (Flu-IVIG) to patients hospitalised with influenza. Flu-IVIG treatment improved outcomes in patients with influenza B but showed no benefit for influenza A.

Methods: To probe potential mechanisms of Flu-IVIG utility, sera collected from patients hospitalised with influenza A or B viruses (IAV or IBV) were analysed for antibody isotype/subclass and Fc-gamma receptor (FcγR) binding by ELISA, bead-based multiplex and NK cell activation assays.

Results: Influenza-specific FcγR binding antibodies were elevated in Flu-IVIG infused IBV- and IAV-infected patients. In IBV-infected participants (n = 62), increased IgG3 and FcgR binding were associated with more favourable outcomes. Flu-IVIG therapy also improved the odds of a more favourable outcome in patients with low levels of anti-IBV Fc-functional antibody. Higher FcγR binding antibody was associated with less favourable outcomes in IAV-infected patients (n = 50), and Flu-IVIG worsened the odds of a favourable outcome in participants with low levels of anti-IAV Fc-functional antibody.

Conclusion: These detailed serological analyses provide insights into antibody features and mechanisms required for a successful humoral response against influenza, suggesting that IBV-specific, but not IAV-specific, antibodies with Fc-mediated functions may assist in improving influenza outcome. This work will inform development of improved influenza immunotherapies.

Trial registration: ClinicalTrials.gov NCT02287467

Funding sources: Funding for this research was provided by Subcontract 13XS134 under Leidos Biomedical Research Prime Contract HHSN261200800001E and HHSN261201500003I, NCI/NIAID.
Introduction

The need for antibody-based prophylactics and therapeutics targeting respiratory viruses has become increasingly urgent. Previous studies and meta-analyses suggested passive infusion with convalescent plasma or hyperimmune anti-influenza intravenous immunoglobulin (Flu-IVIG) may decrease mortality during severe influenza A virus (IAV) infections with the 1918 and 2009 pandemic A/H1N1 strains (1-3). However, some of these studies lacked the design rigor and laboratory analyses to definitively assess the utility of this strategy. Over the past decade, antibody-based options for the treatment and prevention of severe human influenza, including both monoclonal and polyclonal antibodies, have been widely tested in pre-clinical animal models and clinical trials (4-21). Despite being deemed safe and well tolerated, clinical trials of antibody-based therapeutics for influenza A have generally shown minimal or no impact on measures of clinical outcome (4, 6, 8, 11, 17). To date, there are no approved antibody-based therapies to treat human influenza (17).

A recent (n = 329) randomised, double-blind, placebo-controlled, phase III clinical trial (INSIGHT 006; NCT02287467) revealed that the robust rise in hemagglutination inhibition (HAI) titers following Flu-IVIG treatment did not result in any clinical benefit for IAV-infected participants (8). In contrast to the lack of efficacy for IAV, a beneficial effect of Flu-IVIG in influenza B virus (IBV) infected patients was evident (8). Interestingly, IBV antibodies in the Flu-IVIG preparations had a higher affinity than IAV antibodies leading to slower dissociation rates of antigen-antibody complexes or immune complexes (8). The functionality of immune complexes is largely driven by interactions with Fc gamma receptors (FcγRs) expressed on immune effector cells, but the underlying mechanism of Flu-IVIG protection in severe influenza B is unknown.
HAI antibodies prevent influenza virus attachment and entry into host cells by binding to epitopes adjacent to the receptor binding site of hemagglutinin (HA). However, the epitopes targeted by HAI antibodies typically accumulate mutations and glycosylation leading to a narrow strain specificity (22-24). Since Flu-IVIG is manufactured months in advance of clinical use, it may contain limited or suboptimal levels of HAI antibody against antigenically drifted, pandemic or emerging zoonotic influenza viruses. Antibodies targeting the envelope protein neuraminidase (NA) can also block progeny virions from budding out of influenza infected cells, reduce disease severity and perform Fc effector functions (25, 26). We have previously shown that Flu-IVIG preparations contain broadly reactive HA and NA antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) and these antibodies were boosted after Flu-IVIG infusion (27).

Antibodies with Fc-mediated effector functions can target more conserved epitopes than HAI antibodies and are increasingly recognised as potential mediators of influenza immunity (28-37). Immune effector cells, including natural killer (NK) cells and macrophages, express FcγRs that can interact with the Fc domain of immunoglobulin G (IgG)(38, 39). Multimeric engagement (or ‘cross-linking’) of FcγRIIIa by IgG bound to virally infected cells stimulates the release of cytokines and cytotoxic granules from NK cells, which can help to clear infected cells (29, 30, 40). Furthermore, cross-linking of FcγRIIa on phagocytes by multiple IgG Fc domains leads to phagocytosis of virions and infected cells (41). Passive infusion studies in mice have shown that Fc-mediated effector functions can be a key component of protection against lethal IAV and IBV infections (25, 28, 42). It is plausible that Fc functions like ADCC represent potential mechanisms of protective immunity in IBV-infected humans following Flu-IVIG infusion.
Herein, we aim to determine whether influenza-specific Fc-functional antibodies were
increased following Flu-IVIG treatment compared to placebo in IBV-infected patients, with
IAV-infected participants included as a comparator group. The secondary aim of this study
was to examine associations between influenza-specific antibodies and ordinal clinical
outcomes of infection. These detailed mechanistic analyses of the INSIGHT 006 trial provide
valuable information regarding potential antibody features and mechanisms required for a
successful humoral response against influenza viruses, which will inform further research and
development of improved immunotherapies for severe human influenza.

Results

Flu-IVIG provides a treatment benefit for influenza B but not influenza A

The INSIGHT 006 double-blind, randomised, placebo-controlled phase III clinical trial
(NCT02287467) enrolled 329 IAV- and IBV-infected patients from 2014-2018 (8). Of the
308 patients included in the primary analysis (mean age 57 years, 55% female): 156 received
500mL of the Flu-IVIG infusion (0.25 g/kg to a maximum of 24.75g) plus standard care (Flu-
IVIG group) and 152 received 500mL of saline as placebo plus standard care (placebo group)
(8). A total of 224 out of the 308 patients (72.7%) were infected with IAVs (A/H1N1: n = 73,
A/H3N2: n = 137 and A/subtype unknown: n = 14) and 84 out of the 308 patients (27.3%)
were infected with IBVs (B/Yamagata: n = 64, B/Victoria: n = 13 and B/lineage unknown: n
= 7) (8). The primary endpoint of the INSIGHT 006 trial was to determine whether there was
any clinical benefit of Flu-IVIG infusion in patients hospitalised with severe influenza.
Subgroup analyses revealed that Flu-IVIG infusion provided a clinical benefit in the patients
infected with IBV but not IAV. This finding, along with the observed higher affinity of IBV antibodies in Flu-IVIG, motivated further serological analyses to understand the protective mechanisms of Flu-IVIG in patients with severe influenza.

For this study, we analysed a subset of 112 participants from the recently published INSIGHT 006 Flu-IVIG trial, who were infected with either A/H1N1 or B/Yamagata and had sera available for study. These patient groups were selected for further serological analyses due to B/Yamagata being the more common IBV infection (64 cases of B/Yamagata vs 13 cases of B/Victoria) and A/H1N1 influenza virus having higher antigenic stability relative to A/H3N2 viruses over the five-year period of the trial. Paired pre-infusion (d0) and day 1 (d1) post-infusion sera from 62 B/Yamagata IBV-infected patients (out of 64 enrolled) and 50 A/H1N1 IAV-infected patients (out of 73 enrolled) were tested (n = 112), not all sera could be included due to limited sample availability. The B/Yamagata infected group includes 33 patients who received Flu-IVIG and 29 patients who received the placebo infusion. The A/H1N1 infected group is comprised of 24 patients who received the Flu-IVIG infusion and 26 patients who received placebo (Figure 1). The B/Yamagata infected group was older (median = 59 years, IQR = 44 – 64) than the A/H1N1 infected group (median = 52 years, IQR = 45 – 62) and were more likely to be enrolled in the last 1.5 years of the study between October 2016 and May 2018 (Table 1). Clinical outcomes were assessed on day 3 (d3), day 5 (d5) and day 7 (d7) post-infusion using a 6-category ordinal outcome with the following mutually exclusive categories: 1) death, 2) in intensive care, 3) hospitalised but requiring supplemental oxygen, 4) hospitalised and not requiring supplemental oxygen, 5) discharged from hospital but unable to resume normal activities, and 6) discharged from hospital and able to resume normal activities.
In the subset of 112 participants analysed from the INSIGHT 006 study, the B/Yamagata patients who received Flu-IVIG had significantly better odds of a more favourable clinical outcome at all post-infusion timepoints compared to patients who received placebo (d3 OR = 3.1, 95% CI = 1.1, 8.4; d5 OR = 11.4, 95% CI = 3.3, 39.3; d7 OR = 4.5, 95% CI = 1.3, 15.4; Figure 2). There was no treatment effect of Flu-IVIG in the A/H1N1 infected participants at any of the timepoints tested (d3 OR = 1.0, 95% CI = 0.3, 3.1; d5 OR = 0.8, 95% CI = 0.2, 2.6; d7 OR = 0.9, 95% CI = 0.2, 3.2; Figure 2). These results are consistent with findings from the whole INSIGHT 006 cohort, where patients with influenza B received a treatment benefit from Flu-IVIG, but patients with influenza A did not.

Treatment with Flu-IVIG boosts HAI in patients with influenza A and B

HAI antibodies are a known correlate of protection against acquiring influenza virus infection, but their therapeutic potential is poorly understood. Treatment with Flu-IVIG led to an increase in HAI titers against the B/Phuket/3073/2013 virus (B/Phuket virus) in B/Yamagata infected patients at day 1 (d1) post-infusion (median = 160; p < 0.001) compared to placebo (median = 40; Figure 3A). A significant rise in HAI titer against the A/California/07/2009 H1N1 virus (A/Cali09 virus) was also detected in A/H1N1 infected participants following Flu-IVIG infusion (median = 80; p < 0.001) relative to placebo (median = 10; Figure 3B). The treatment group difference between placebo and Flu-IVIG at d1 post-infusion was adjusted for d0 baseline HAI titer. These results are in agreement with prior studies (8, 27), confirming that Flu-IVIG infusion causes a significant rise in HAI titer. Infusion with Flu-IVIG also led to an increase in neutralizing antibody titers (median = 160; p < 0.001) against the B/Phuket virus by microneutralization assay (MNA) and an increase in
IgG against the B/Phuket HA stem (MFI = 1010; p < 0.001) relative to placebo (median MNA titer = 20 and HA stem IgG MFI = 507; Supplemental Figure 1).

Flu-IVIG infusion increases Fc-functional antibodies in patients with influenza A and B

Passively infused antibodies with Fc effector functions can protect mice from lethal IAV and IBV infections (25, 28, 42), and we have shown that antibody engagement of recombinant human FcγRIIIa dimers correlates with antibody-dependent NK cell activation and ADCC activity in vitro (43, 44). We next investigated whether Flu-IVIG treatment increased FcγRIIIa and FcγRIIa binding antibodies as well as antibody-dependent NK cell activation.

Infusion with Flu-IVIG boosted HA-specific FcγRIIIa cross-linking antibody titers (~ 4-fold) in B/Yamagata infected patients (median = 1280; p < 0.001), compared with placebo titers (median = 320; Figure 4A). Similar results were obtained for A/H1N1 infected participants, with Flu-IVIG treatment resulting in a ~ 5-fold rise in HA-specific FcγRIIIa binding antibodies (Flu-IVIG median d1 = 640 vs placebo median d1 = 120; p < 0.001; Figure 4B).

The treatment group difference between placebo and Flu-IVIG at d1 post-infusion was adjusted for baseline d0 FcγRIIIa binding antibody titer. Sera samples from B/Yamagata and A/H1N1 infected patients demonstrated strong positive correlations between HA-specific FcγRIIIa dimer binding and HAI titers (Supplemental Figure 2), which supports our previous work (43, 45).

To confirm the above results, a bead-based multiplex assay was also used to assess both FcγRIIIa and FcγRIIa dimer binding antibodies. In the B/Yamagata infected patients, HA-specific FcγRIIIa and FcγRIIa binding antibodies were increased following infusion with Flu-IVIG (FcγRIIIa MFI = 1894 and FcγRIIa MFI = 3968) compared to placebo infusion.
(FcγRIIIa MFI = 1093 and FcγRIIa MFI = 2102, p < 0.001; Figures 4C & 4D). A significant rise in HA-specific FcγRIIIa and FcγRIIa dimer binding antibody was also detected in Flu-IVIG treated A/H1N1 infected patients (FcγRIIIa MFI = 2398 and FcγRIIa MFI = 4961) relative to the placebo group (FcγRIIIa MFI = 1008 and FcγRIIa MFI = 1811, p < 0.001; Figures 4E & 4F). As described above, treatment group differences between placebo and Flu-IVIG at d1 post-infusion were adjusted for MFI of FcγR binding antibody at baseline (d0).

To show that increased FcγR dimer binding leads to greater functional immune cell activation, an antibody-dependent NK cell activation assay was performed with INSIGHT 006 patient sera samples. We found that HA-specific NK cell activation was significantly increased in B/Yamagata and A/H1N1 infected participants who received Flu-IVIG treatment (Figures 4G & 4H). Strong positive correlations (r = 0.81-0.9, p < 0.001) were observed between HA-specific NK cell activation and FcγRIIIa dimer binding (ELISA and multiplex assay) for both B/Yamagata and A/H1N1 infected patients (Supplemental Figure 3).

There is increasing interest in anti-NA antibodies as they are also capable of blocking virion egress and mediating Fc effector functions. A rise in NA-specific FcγRIIIa and FcγRIIa binding was detected following treatment with Flu-IVIG in B/Yamagata infected patients (Supplemental Figure 4), which closely mirrored data for influenza HA.

IgG subclass analysis in Flu-IVIG treated influenza A and B infected patients

Different IgG subclasses selectively engage human FcγRs, with IgG1 and IgG3 having the greatest affinity for activating human FcγRs, like FcγRIIIa and FcγRIIa (38, 39). To further characterise the impact of Flu-IVIG treatment on humoral immunity in patients with severe
influenza A or B, we examined changes in influenza-specific IgG subclasses. In B/Yamagata infected patients, higher levels of IgG1, IgG2 and IgG3 against the HA of the reference B/Phuket virus were detected following Flu-IVIG infusion (IgG1 MFI = 18530, IgG2 MFI = 321 and IgG3 MFI = 325) compared to placebo controls (IgG1 MFI = 8024, IgG2 MFI = 75 and IgG3 MFI = 137; Supplemental Figures 5A, 5C and 5E). In A/H1N1 infected patients, higher levels of HA-specific IgG1, IgG2 and IgG3 were also detected following Flu-IVIG infusion (IgG1 MFI = 23412, IgG2 MFI = 76 and IgG3 MFI = 434) relative to placebo controls (IgG1 MFI = 15125, IgG2 MFI = 42 and IgG3 MFI = 44; Supplemental Figures 5B, 5D and 5F). There was no difference in HA-specific IgG4 between the placebo and Flu-IVIG treated groups and no detectable increase after Flu-IVIG treatment (Supplemental Figures 5G & 5H). Due to its low abundance in sera, IgG4 in patient samples was often below the limit of detection of the multiplex assay following subtraction of blank and background wells (B/Yamagata: 11/124 undetectable and A/H1N1: 14/100 undetectable). Anti-NA IgG1, IgG2 and IgG3 were also significantly increased post-infusion with Flu-IVIG in B/Yamagata and A/H1N1 infected participants relative to placebo and pre-infusion levels (Supplemental Figures 6 & 7). NA-specific IgG3 and IgG4 levels were very low and frequently undetectable in the multiplex assay (IgG3: 82/224 undetectable and IgG4: 174/224 undetectable; Supplemental Figures 6 & 7).

Association between anti-HA antibody titer and outcome in IAV and IBV-infected patients

To determine if high anti-HA antibody titers were associated with improved d5 clinical outcomes following Flu-IVIG or placebo infusion, the B/Yamagata and A/H1N1 infected patients were divided into low and high antibody titer groups then analysed using univariate or multivariate proportional odds regression models. The anti-HA antibody titers were
generated by HAI assays and HA-specific FcγRIIIa dimer binding ELISAs. For the analysis, the Flu-IVIG and placebo groups were pooled to perform a whole cohort assessment of whether high or low antibody titer groups are associated with better influenza outcome regardless of the source of antibody, either artificially infused (for those who received Flu-IVIG) or naturally mounted due to infection (for those who received placebo). Summary odds ratios (ORs) greater than one indicate that the ‘high’ antibody titer group has better odds of being in a more favourable clinical outcome category, whereas ORs less than one favour the ‘low’ antibody titer group.

A HAI titer of 40 is typically defined as 50% protective against influenza virus infection (46, 47). In patients with severe B/Yamagata infection, there was a trend towards participants with post-infusion HAI titers greater or equal to 40 (≥ 40) having better odds of a favourable d5 ordinal outcome compared to those with HAI titers less than 40 (< 40) in a univariate proportional odds regression model (OR = 2.8, 95% CI = 0.9, 8.5; p = 0.07), but this trend was not observed in a multivariate model (OR = 2.2, 95% CI = 0.5, 10.3; p = 0.30; Figure 5A). In participants with severe A/H1N1 influenza, there was a trend towards patients with post-infusion HAI titers ≥ 40 having poorer odds of a favourable d5 ordinal outcome in both the univariate (OR = 0.36, 95% CI = 0.1, 1.1; p = 0.07) and the multivariate (OR = 0.2, 95% CI = 0.02, 1.1; p = 0.06) proportional odds regression models, but none of the observed differences were statistically significant (Figure 5A).

High pre-existing ADCC antibody titers (> 160) have previously been reported to reduce influenza disease severity in an experimental human influenza challenge (35). In this study, IBV-infected patients with high post-infusion HA-specific FcγRIIIa cross-linking antibody titers (> 160) had better odds of a favourable d5 ordinal outcome compared to patients with
lower titers in a univariate proportional odds regression model (OR = 2.98, 95% CI = 1.0, 8.8; p = 0.048), but significance was lost in the multivariate model (OR = 4.2, 95% CI = 0.7, 27.1; p = 0.13; Figure 5B). Poorer odds of a favourable clinical outcome were observed in A/H1N1 infected patients with high FcγRIIIa cross-linking antibody titers compared to participants with lower titers in both univariate (OR = 0.3, 95% CI = 0.1, 0.8; p = 0.02) and multivariate (OR = 0.03, 95% CI = 0.01, 0.4; p = 0.01) proportional regression models (Figure 5B).

Association between influenza antibody features and clinical outcomes in patients with severe influenza A and B

To investigate whether antibody characteristics (including IgG and IgA subclasses, FcγR binding, HAI or NK cell activation) are associated with better outcomes, univariate and multivariate proportional odds regression models were performed. Antibody isotype and subclass composition as well as FcγR binding were measured using bead-based multiplex assays. The B/Yamagata and A/H1N1 infected patients were analysed separately, with the placebo and Flu-IVIG treated participants pooled to evaluate associations between the antibody parameters tested and clinical outcome irrespective of antibody source. Summary odds ratios (ORs) greater than one suggest that patients with higher antibody levels have improved odds of being in a better clinical outcome category, whereas ORs less than one indicate that patients with lower antibody levels have improved odds of being in a better outcome category.

At the baseline pre-infusion timepoint (d0), HA-specific IgG1 was associated with a more favourable outcome in B/Yamagata infected patients (Figure 6A & C; left side of heat map).
Following Flu-IVIG or placebo infusion (d1 post-infusion), HA-specific IgG1, IgG3, FcγRIIa binding antibody, FcγRIIIa binding antibody and NK cell activation were associated with improved odds of a favourable d5 ordinal outcome in patients with severe influenza B using a univariate proportional odds regression model (Figure 6B; left side of heat map). In a multivariate regression model, none of the antibody features tested were significantly associated with more favourable d5 ordinal outcomes in patients with severe B/Yamagata influenza, although HA-specific IgG3 (OR = 1.42), FcγRIIa binding antibody (OR = 1.29) and FcγRIIIa binding antibody (OR = 1.61) still had OR values greater than 1 in the adjusted model (Figure 6D; left side of heat map). In the participants with influenza B, a trend suggesting a potential association between post-infusion HA-specific IgG1 and poorer odds of a favourable d3 clinical outcome was shown only in the multivariate proportional odds regression model (OR = 0.53, p = 0.06; Supplemental Figure 8), but this trend was not observed in the univariate model nor at later d5 and d7 timepoints (Figure 6 and Supplemental Figure 9).

In the A/H1N1 infected patients, none of the antibody features tested were associated with d5 clinical outcomes at the pre-infusion timepoint (Figure 6A & C; right side of heat map). Interestingly, post-infusion HA-specific FcγRIIa binding antibody, FcγRIIIa binding antibody and NK cell activation were associated with worse odds of a favourable d5 clinical outcome in patients with severe A/H1N1 influenza using both univariate and multivariate proportional odds regression models (Figure 6B & D; right side of heat map). Proportional odds regression models were also performed for ordinal outcomes at d3 (Supplemental Figure 8), d7 (Supplemental Figure 9) and for B/Phuket NA-specific antibodies (Supplemental Figure 10), with similar trends observed as for the d5 outcomes overall.
Flu-IVIG treatment reduces odds of a favourable clinical outcome in A/H1N1 infected patients with low baseline FcγRIIIa binding antibody titers

Antibody-based therapies like Flu-IVIG may be of greatest benefit in patients who do not mount a robust humoral response to infection (48). Subgroup analyses were therefore performed to determine whether Flu-IVIG treatment improved the odds of a more favourable clinical outcome in patients with below or above median baseline (d0 pre-infusion) HA-specific FcγRIIIa binding antibody titers. Summary odds ratios (ORs) greater than one indicate that patients infused with Flu-IVIG have better odds of being in a more favourable clinical outcome category, whereas ORs less than one favour placebo infusion.

Overall, Flu-IVIG infusion showed more favourable mean ordinal outcomes and ordinal outcome distributions, relative to placebo, in B/Yamagata infected patients with below median (≤ 160) and above median (> 160) baseline FcγRIIIa binding antibody titers (Figures 7A & B). Treatment with Flu-IVIG improved the odds of a more favourable clinical outcome at d3 (OR = 2.5, 95% CI = 0.7, 9.0), d5 (OR = 31.5, 95% CI = 3.1, 316.2) and d7 (OR = 3.4, 95% CI = 0.8, 13.9) post-infusion in B/Yamagata infected patients with below median (≤ 160) baseline FcγRIIIa binding antibody titers, and statistical significance was reached at d5 post-infusion (p = 0.003; Figure 7C). There was no treatment effect of Flu-IVIG in B/Yamagata infected patients with above median (> 160) baseline FcγRIIIa binding antibody titers (Figure 7C). The treatment effect of Flu-IVIG vs placebo was not significantly different between the below median (≤ 160) and the above median (> 160) subgroups; however, a trend was observed at d5 post-infusion (interaction p = 0.10). These findings suggest that IBV-infected participants with lower baseline Fc-functional antibody titers may be receiving some additional clinical benefit from Flu-IVIG treatment.
Surprisingly, Flu-IVIG infusion showed less favourable mean ordinal outcomes and ordinal outcome distributions compared to placebo infusion in A/H1N1 infected patients with below median (≤ 80) baseline FcγRIIIa binding antibody titers (Figures 8A & B). Mean ordinal outcomes and ordinal outcome distributions were similar in placebo and Flu-IVIG groups for A/H1N1 infected patients with above median (> 80) baseline FcγRIIIa binding antibody titers (Figures 8A & B). Treatment with Flu-IVIG reduced the odds of a more favourable outcome in A/H1N1 infected patients with below median (≤ 80) baseline FcγRIIIa binding antibody titers at d3 (OR = 0.3, 95% CI = 0.1, 1.6), d5 (OR = 0.1, 95% CI = 0.02, 0.6) and d7 (OR = 0.2, 95% CI = 0.04, 1.1) post-infusion, and the odds of a more favourable outcome were significantly worse than placebo at d5 (p = 0.01; Figure 8C). There was no treatment effect of Flu-IVIG in A/H1N1 infected patients with above median (> 80) baseline FcγRIIIa binding antibody titers (Figure 8C). The treatment effect of Flu-IVIG vs placebo was significantly different between the below median (≤ 80) and the above median (> 80) subgroups at d5 post-infusion (interaction p = 0.004) and d7 post-infusion (interaction p = 0.04). Thus, Flu-IVIG treatment was associated with less favourable outcomes in A/H1N1 infected participants who had lower levels of Fc-functional antibodies at baseline.

Flu-IVIG treatment decreases serum concentration of IL-6 in patients with severe influenza

Participant serum was tested for several pro-inflammatory cytokines including IL-6, IL-1β, TNFα and IFNγ. For B/Yamagata and A/H1N1 infected patients, serum cytokines levels were generally low or below the limit of detection for interleukin-1beta (IL-1β), tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) precluding any further analyses of the treatment groups (data not shown). Patients with severe B/Yamagata influenza had...
slightly higher concentrations of serum IL-6 than patients with A/H1N1 influenza in both the placebo and Flu-IVIG groups at pre- (d0) and d1 post-infusion timepoints. Serum concentrations of IL-6 were significantly lower for Flu-IVIG infused patients, relative to placebo, for both A/H1N1 and B/Yamagata infected patients at d1 post-infusion (p < 0.001; Supplemental Figure 11).

Discussion

The development of antibody-based therapies and prophylactics for severe human influenza has been a long-standing but elusive aim of influenza researchers worldwide. No antibody-based treatments are available for patients hospitalised with severe IAV or IBV infections (17), despite a large number of antibody-based therapies being tested in pre-clinical animal models and clinical trials (4-21). In recent years, broadly neutralising monoclonal antibodies (mAbs) targeting the HA stem have been a major focus of universal influenza therapy design. However, many of the promising HA stem mAbs did not reduce symptoms or time to viral clearance in efficacy trials (4, 6, 11, 17). An alternate approach is to treat severe human influenza with polyclonal antibody mixtures, such as convalescent plasma and hyperimmune IVIG. Convalescent blood products appeared to reduce mortality following severe infections with both the A/H1N11918 and 2009 pandemic IAVs (1-3), although the relative lack of rigor of some prior trials has meant that these treatments have remained in the research arena.

A recent placebo-controlled phase III clinical trial (INSIGHT 006) revealed that infusion with Flu-IVIG was beneficial for patients hospitalised with severe influenza B (8). Surprisingly, Flu-IVIG did not provide any clinical benefit for patients hospitalised with influenza A, in spite of a robust rise in HAI titer following treatment (8). To explore a potential role for Fc-
mediated antibody functions in improving outcomes during severe influenza B, serum
antibodies from B/Yamagata and A/H1N1 infected patients enrolled in the Flu-IVIG trial
were analysed. We first showed that Flu-IVIG treatment increased serum HAI titers in the
A/H1N1 and B/Yamagata infected patients relative to placebo infused controls, which
mirrored results from the larger INSIGHT 006 clinical trial (8). Following Flu-IVIG
infusion, B/Yamagata infected patients had a 2-fold higher median HAI titer (median HAI
titer = 160 against the B/Phuket virus) than A/H1N1 patients (median HAI titer = 80 against
the A/Cali09 virus), which may play a role in the observed protection in influenza B.
However, participants with influenza B also showed 2-4-fold higher median HAI titers pre-
infusion with Flu-IVIG and in the placebo treated group. The higher HAI titers in patients
with severe influenza B may be due to limited antigenic drift and greater relative stability of
IBVs compared to IAVs (49). Patients with severe influenza B who received Flu-IVIG had
higher neutralizing antibody titers (by MNA) and higher levels of HA stem-specific IgG
compared to placebo recipients, both of which may also contribute to the clinical benefit of
Flu-IVIG treatment in patients with influenza B. While HAI titer is a known correlate of
protection against acquiring influenza virus infection (46, 47), the therapeutic benefit of
infusing HAI and neutralising antibodies following influenza symptom onset is unclear. In
this study, Flu-IVIG was administered up to seven days after symptom onset (8, 50), once
influenza virus infection was already established. The HAI antibodies in Flu-IVIG also have
limited therapeutic applications, as they may not be well-matched against antigenically
driffed or emerging influenza viruses. Antibodies with Fc effector functions target more
conserved HA epitopes than HAI antibodies and are important for clearance of influenza
virus-infected cells. We have previously shown that Flu-IVIG preparations contain Fc-
functional antibodies that can bind to a broad range of influenza virus strains and subtypes
(27).
In the Flu-IVIG preparations, IBV antibodies were reported to have higher affinities than the IAV antibodies, resulting in slower dissociation rates of immune complexes (8). Since the functionality of immune complexes depends heavily on engagement of FcγRs expressed by immune cells, we next measured FcγR binding antibodies in participant sera. We found that Flu-IVIG treatment significantly increased HA-specific FcγRIIIa and FcγRIIa binding antibodies and resulted in greater NK cell activation compared to placebo in patients hospitalised with both B/Yamagata and A/H1N1 influenza. Patients with B/Yamagata influenza virus had a 2-fold higher median HA-specific FcγRIIIa binding antibody titer (median titer = 1280 against the B/Phuket HA) than A/H1N1 patients (median titer = 640 against the A/Cali09 HA) following Flu-IVIG treatment, and this may contribute to Flu-IVIG protection in patients with influenza B. Similar to the HAI results, influenza B participants also showed 2-4-fold greater FcγRIIIa binding antibody titers pre-infusion with Flu-IVIG and after placebo infusion. As noted above, the elevated FcγR binding antibody levels observed for patients with influenza B may be the result of reduced antigenic drift and higher stability of IBVs relative to IAVs (49). Fc-mediated effector functions are required for broadly reactive anti-HA mAbs to confer protection from lethal IAV and IBV infections in a murine passive infusion model (25, 28, 42). Further, ferrets infused with IVIG were protected from lethal challenge with an H5N1 influenza virus in the absence of detectable HAI antibodies (51). A small human influenza challenge study also showed that high levels of ADCC-mediating antibodies were associated with decreased viral shedding and reduced disease severity (35). Together these studies suggest that the rise in anti-HA and anti-NA Fc-functional antibodies following Flu-IVIG treatment may contribute to improving clinical outcomes in patients with severe influenza B.
The majority of influenza challenge studies demonstrating a protective role for Fc-mediated antibody functions have been performed using IAVs (25, 28). However, higher levels of Fc-functional antibodies after Flu-IVIG treatment did not show any clinical benefit for patients with influenza A. While Fc-mediated effector functions are known to be protective in murine models of influenza, Fc-functional antibodies can also play a role in immunopathology and inflammation during viral infections (52). The delicate balance between protective and pathological roles of Fc-functional antibodies may be impacted by the type, subtype or strain of influenza virus infection, clinical presentation and host immunological factors including pre-existing immunity. Humans, unlike animal models, have a complex history of influenza virus exposure resulting in a broad range of pre-existing Fc-functional antibodies and memory responses (33-35), which may impact clinical outcomes irrespective of Flu-IVIG treatment. A limitation of the INSIGHT 006 trial is that the majority of IBV-infected participants were recruited in the last 1.5 years of the trial, therefore some immunological differences between the IAV- and IBV-infected populations may exist, and this could impact responsiveness to Flu-IVIG treatment. Further investigation is necessary to dissect the mechanisms underlying the differential outcomes of Flu-IVIG therapy in patients hospitalised with IAV or IBV.

Antibody characteristics, including IgG1, IgG3, FcγRIIIa binding, FcγRIIa binding and NK cell activation, were associated with better clinical outcomes in participants with severe influenza B in a univariate proportional odds regression model, but the significance of these associations was reduced in the multivariate model and needs to be confirmed with larger trials. These preliminary findings suggest that Fc-functional antibodies may play a more protective role in IBV infection by assisting to reduce disease severity through mechanisms such as ADP and ADCC. No significant association between HAI titer and clinical outcome
were observed for patients infected with B/Yamagata or A/H1N1, so it is unclear whether neutralisation of free virions is playing any protective role. Cross-lineage anti-HA mAbs protect mice from lethal IBV infection either by targeting the receptor binding domain or by non-neutralising Fc-mediated functions (42). Polyfunctional humoral immunity and elevated levels of FcγR engaging antibody may also be associated with better clinical outcomes in humans hospitalised with severe influenza B, but a larger clinical trial would be required to fully investigate this.

Interestingly, several antibody features were associated with worse outcomes in patients hospitalised with influenza A. Higher levels of HA-specific FcγR dimer binding antibody and NK cell activation were associated with poorer clinical outcomes in patients with severe A/H1N1 influenza, indicating that the immunopathological or inflammatory effects Fc-functional antibodies may outweigh their protective effects in this instance. In experimental IAV challenge studies, higher levels of HA-specific ADCC antibodies are often detected in humans with more severe influenza symptoms (35, 53), but whether this is simply due to greater viral replication and antigen availability is not clear. FcγR cross-linking antibodies can clear infected cells and help control viral replication, but these antibodies may also contribute to inflammation and immunopathology at the site of infection. High levels of non-neutralising antibodies and pathogenic immune complexes (formed with these non-neutralising antibodies) were identified in patients with severe influenza and fatal infections with the A/H1N1 2009 pandemic IAV (54, 55). Mice immunised with an ADCC epitope (E1), found in the HA head domain, had increased alveolar damage and mortality following infection with the A/H1N1 2009 pandemic IAV compared to PBS-immunised mice (52). Vaccination with the E1 epitope significantly increased pro-inflammatory cytokines and perforin in the murine lungs 5 days post-infection, suggesting that ADCC may be driving
excessive inflammation and immune cell infiltration in the lungs (52). While E1-vaccinated
mice did show a modest decrease in lung viral load, any protective effect was outweighed by
inflammatory lung damage (52). Serum concentrations of pro-inflammatory cytokines,
including IL-1β, TNFα and IFNγ, were low or below the limit of detection in most study
participants irrespective of treatment group or influenza type. There was a reduction in serum
IL-6 in the Flu-IVIG treated group, compared to the placebo group, for patients with severe
influenza A and B at d1 post-infusion. This indicates Flu-IVIG treatment may reduce
systemic inflammation shortly after infusion, but serum IL-6 does not necessarily reflect local
lung inflammation at later post-infusion timepoints (d5 and d7). Further studies with more
direct measures of lung inflammation are needed. The observed associations between high
levels of Fc-functional antibody and poorer outcomes in patients with severe A/H1N1
influenza suggest the hypothesis that antibody-induced inflammation may drive
immunopathology in the IAV-infected human lung.

Antibody-based therapies often provide the greatest benefit for patients that do not mount a
rapid or effective humoral response to infection. As such, we performed subgroup analyses to
determine the impact of Flu-IVIG infusion on patients with below or above median FcγRIIIa
binding titers. In patients hospitalised with B/Yamagata influenza, the Flu-IVIG treated
participants with lower (or below median) baseline Fc-functional antibody titers had
improved clinical outcomes relative to placebo at d5 post-infusion, with an ongoing trend
towards improved outcomes on d7 post-infusion. These results suggest that IBV-infected
participants with low baseline levels of Fc-functional antibody may be receiving greater
clinical benefit following Flu-IVIG therapy, possibly due to the infusion of ADCC- and
ADP-mediating antibodies that can remove virus-infected cells and free virions. Additional
mechanistic studies in animal models are required to pinpoint the immune cells and effector
functions involved in the protective effect of Flu-IVIG against IBV. Furthermore, future clinical trials specifically targeted towards severe influenza B are needed to validate the observed clinical benefit of Flu-IVIG therapy in this subgroup.

The effect of Flu-IVIG therapy was different in patients hospitalised with severe influenza A. For the A/H1N1 infected group, Flu-IVIG treated patients with low (or below median) baseline titers of FcγRIIIa binding antibody had significantly worse outcomes d5 post-infusion compared to placebo, with this trend continuing on d7 post-infusion. This is consistent with the association between poorer clinical outcomes and higher levels of HA-specific Fc-functional antibody. Taken together, these findings suggest the hypothesis that high levels of FcγR binding and NK cell activating antibody may be worsening clinical outcomes by driving excessive inflammation in the lungs of IAV-infected participants or by some other unknown mechanism. Few studies on Fc-mediated antibody functions have examined their ability to enhance immunopathology (52, 54-56). In vivo knockout and immune cell depletion studies in animal models are needed to dissect the mechanisms that underpin potential Fc-mediated immunopathology during severe IAV infection.

Overall, HAI and Fc-functional antibodies were both increased following Flu-IVIG treatment in the A/H1N1 and B/Yamagata infected participants. Antibody characteristics such as IgG3 and FcγR engagement showed some association with improved odds of a more favourable outcome in patients with severe influenza B. Unexpectedly, FcγR binding antibody and antibody-dependent NK cell activation were associated with poorer odds of a favourable clinical outcome in the A/H1N1 infected participants post-infusion. Treatment with Flu-IVIG improved the odds of a more favourable clinical outcome in B/Yamagata infected patients with lower baseline levels of Fc-functional antibody. In contrast, treatment with Flu-IVIG
worsened the odds of a more favourable clinical outcome in A/H1N1 infected patients with lower levels of baseline Fc-functional antibody. Our comprehensive examination of serum antibodies from Flu-IVIG and placebo infused humans with severe influenza has provided invaluable insight into the mechanisms and antibody characteristics that underpin effective humoral immunity against influenza virus. This knowledge will help to inform the development of new and improved antibody-based therapies to reduce the health burden of severe human influenza.

Methods

Hyperimmune anti-influenza hyperimmune immunoglobulin (Flu-IVIG)

The five Flu-IVIG batches given to patients were manufactured annually from 2013 to 2017 inclusive (for use from 2014 to 2018 in INSIGHT 006 clinical trial) by Emergent BioSolutions (Winnipeg, MB, Canada) under contract to the National Institute of Health. The Flu-IVIG lots were prepared using anti-influenza plasma collected from fractionated whole blood or by plasmapheresis from influenza-immune volunteers at designated collection sites in the USA and Canada. Influenza-immune volunteers and plasma units were selected on the basis of elevated HAI titers against contemporary vaccine strains (for further details see Ref. 8).

Hemagglutinin and neuraminidase proteins

In the INSIGHT 006 clinical trial, the A/Cali09 virus and the B/Phuket virus were the major reference strains studied in the A/H1N1 and B/Yamagata infected patients, respectively.
These reference strains were recommended by the WHO for inclusion in the seasonal influenza vaccine from the 2013/14 to the 2016/17 influenza seasons for the A/Cali09 virus and from the 2015/16 to the 2017/18 influenza seasons for the B/Phuket virus, indicating that they were the predominant strains circulating in the human population during the bulk of the clinical trial period. Therefore, the majority of our study cohort, including both the A/H1N1 and B/Yamagata groups, were enrolled during influenza seasons where their reference virus (A/Cali09 or B/Phuket respectively) was recommended for inclusion in the seasonal vaccine. As such, we performed all assays with the A/Cali09 and B/Phuket reference viruses or HA proteins from these viruses to reflect, as closely as feasible, the antibody responses of the B/Yamagata and A/H1N1 infected participants recruited. Recombinant HA proteins from the A/Cali09 virus and the B/Phuket virus, NA protein from the B/Phuket virus and a negative control protein simian immunodeficiency virus gp120 (SIV gp120) were purchased from SinoBiological (Shanghai, China). A stabilized HA stem protein derived from the B/Phuket virus (42, 57) and a stabilized NA protein (SNAP) from the A/Cali09 virus (58) were designed as previously described and generously provided by Dr Adam Wheatley (University of Melbourne, Parkville).

Hemagglutination Inhibition assay

HAI assays for A/California/07/2009 H1N1 virus and B/Phuket/3073/2013 viruses were performed as previously described (59). The B/Phuket/3073/2013 virus was ether split to perform the HAI assay (60). The MN assays were performed for the B/Phuket/3073/2013 virus as previously described (61).

FcyRIIIa dimer ELISA
The capacity of anti-influenza antibodies in Flu-IVIGs and patient sera samples to bind human FcγRs was assessed using a recombinant soluble human FcγRIIIa dimer ELISA as previously described (53, 59). The recombinant soluble human FcγRIIIa and FcγRIIa dimers were generously provided by Prof P Mark Hogarth and Dr Bruce Wines (Burnet Institute, Melbourne). Briefly, 50ng of commercially sourced recombinant HA (from A/Cali09 or B/Phuket2013), NA (from B/Phuket2013) or SIV gp120 was coated in the wells of a 96-well NUNC Maxisorb plates (Thermo Fisher Scientific, Waltham, MA, USA) overnight at 4°C. The wells of the plates were blocked with 1% bovine serum albumin (BSA; Sigma-Aldrich, St. Louis, MO, USA) and 1mM EDTA (Sigma-Aldrich, St. Louis, MO, USA) in phosphate buffered saline (PBSE/BSA) for 1h at 37°C. Two-fold serial dilutions of patient sera (starting at 1:40 dilution) were added to the wells and incubated for 1h at 37°C. Plates were washed prior to incubation with 50μL of 0.1μg/mL biotinylated human FcγRIIIa dimer for 1h at 37°C. After washing, incubation with a 1:10,000 dilution of Pierce High Sensitivity HRP-Streptavidin (Thermo Fisher Scientific, Waltham, MA, USA) for 1h at 37 °C then washed. Colour was developed by adding 3,3,5,5-tetramethylbenzidine (TMB; Sigma-Aldrich, St. Louis, MO, USA) then stopped with 1 M hydrochloric acid (HCl), and absorbance read at 450 nm. Wells coated with SIV gp120 and incubated with Flu-IVIG or patient sera were used as negative control wells to detect non-specific or background binding. Endpoint titers were calculated using 3× background binding in antigen-coated wells without sera.

Luminex bead-based multiplex assay

A multiplex assay to detect influenza virus-specific antibodies was performed as previously described (43, 62, 63). Bio-Plex Pro Magnetic COOH bead sets (Bio-Rad Laboratories,
Hercules, CA, USA), each with different fluorescent properties, were coupled to 10 µg of
A/Cali09 HA, B/Phuket HA, B/Phuket NA or SIV gp120 (as a negative control) using 1.25
million beads per antigen. Covalent coupling of the antigens to the magnetic carboxylated
beads was performed using a two-step carbodiimide reaction (43, 63, 64).

A working bead mixture, containing 1000 of each bead type per well, was combined with 50
µL of a 1:100 dilution of patient sera into the wells of a black, clear bottom 96-well plate
(Greiner Bio-One, Kremsmünster, Austria). Mouse anti-human IgG1-4 and IgA1-2 antibodies
conjugated to R-phycoerythrin (PE; Southern Biotech, Birmingham, AL, USA) were added at
1.3 µg/mL in 50 µL per well to detect antigen-specific IgG and IgA bound to fluorescent
beads. All plates were washed manually using a magnetic plate separator (Luminex, Austin,
TX, USA) and read on the Bio-Plex MAGPIX Multiplex reader or Luminex 200 (Luminex,
Austin, TX, USA). Binding of the PE detector antibodies was measured to calculate median
fluorescence intensity (MFI). Double background subtraction was performed for each well,
first subtracting blank wells (sheath only) followed by subtraction of the SIV gp120-coupled
bead signal (background or nonspecific binding). To measure the capacity of influenza-
specific IgG to cross-link human FcγRs, 50 µL of biotinylated recombinant soluble human
FcγRIIa or FcγRIIIa dimer was added to the wells at a concentration of 1.3 µg/mL followed
by washing and the addition of 50 µL of streptavidin PE (SAPE; Invitrogen) at 1 µg/mL to
the wells. The plates were then incubated for 2h on a plate shaker at room temperature,
washed and read as described above.

The concentrations of IL-1β, IL-6, TNFα and IFNγ were measured in participant sera using
the ProcartaPlex 4-plex custom cytokine assay (custom assay ID# MXWCX9T; Thermo
Fisher Scientific, Waltham, MA, USA) as described in the manufacturer’s protocol. Cytokine
concentrations were calculated by the ProcartaPlex Analysis App (Thermo Fisher Scientific, Waltham, MA, USA) using a standard curve derived from known reference concentrations of each cytokine provided by the manufacturer. A 5-parameter logistic (5PL) curve fit model was applied to the standard curve for analysis.

Antibody-mediated NK cell activation assay

To assess antibody-dependent NK cell activation, expression of the degranulation marker CD107a by an NK-92-FcγRIIIa-GFP cell line was measured in response to antibodies immobilized by plate-bound influenza proteins as previously described (33, 53). The NK-92-FcγRIIIa-GFP cell line was kindly provided by Dr Kerry Campbell (Institute of Cancer Research, Philadelphia, PA). Briefly, 96-well NUNC Maxisorb plates (Thermo Fisher Scientific, Waltham, MA, USA) were coated with 600ng of influenza HA (from A/Cali09 or B/Phuket2013) or SIV gp120 (SinoBiological, Shanghai, China) and incubated with a 1:80 dilution of patient sera for 2h at 37°C. Next, 2×10^5 NK-92-FcγRIIIa-GFP cells (expressing the V176 variant of FcγRIIIa conjugated to green fluorescent protein (GFP), provided by Dr K. Campbell, Institute for Cancer Research. Philadelphia, PA) were added for 5 hours at 37°C. Then the NK-92-FcγRIIIa-GFP cells were then incubated with 1 mM EDTA and anti-CD107a APC-Cy7 (clone H4A3; Biolegend, San Diego, CA, USA) for 30 minutes in the dark. Cells were washed twice, fixed with formaldehyde, and acquired on a FACSCanto flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). The proportion of NK-92-FcγRIIIa-GFP$^+$ cells expressing CD107a was quantified. Wells coated with SIV gp120 and incubated with patient sera were used as negative control wells to detect non-specific or background binding. For each patient sample, the percentage of CD107a$^+$ NK-92 cells in the SIV gp120
negative control wells was subtracted from the percentage of CD107\(^+\)NK-92 cells in the HA coated wells.

Statistical Analyses

Analysis of covariance, with the pre-infusion or d0 level as a covariate, was used to compare differences between the placebo and Flu-IVIG treatment groups at d1 post-infusion for HAI titer, Fc\(\gamma\)RIIIa binding antibody titer, Fc\(\gamma\)RIIIa binding antibody MFI, Fc\(\gamma\)RIIa binding antibody MFI, pan IgG MFI and IgG1 MFI. The p-value for these comparisons represents the difference between treatment groups for \(\log_2\) d1 post-infusion antibody level controlling for pre-infusion (d0) level.

The association between Flu-IVIG treatment and changes in HA- and NA-specific antibody MFIs for IgG2, IgG3 and IgG4 were investigated using Tobit regression models in B/Yamagata and A/H1N1 infected participants. The Tobit regression models left censored the ‘zeros’ values (which represent MFIs at or below background levels) of the immunological parameters for IgG2, IgG3 and IgG4 antibodies. Given that antibody MFI values were transformed to the \(\log_2\) scale, the results from the Tobit models are presented as exponentiated coefficients and interpreted as relative mean differences of Flu-IVIG group compared with the placebo group, after controlling for baseline or day 0 (d0) pre-infusion antibody levels. Of note, the ‘zero’ values of the immune markers were not \(\log_2\)-transformed when left censoring them in the Tobit regression models. A sensitivity analysis which replaced ‘zero’ values with \(\log_2\)-transformed of 0.001 for the left censoring in the models showed similar results. P-values < 0.05 were considered as statistically significant. All analyses were conducted in Stata version 16.1 (StataCorp Inc., College Station, TX, USA).
At d3, d5 and d7, the treatment effect was estimated for subgroups defined by infection with B/Yamagata vs A/H1N1 using a proportional odds logistic model to estimate a summary odds ratio for being in a better category. Analyses were adjusted for baseline ordinal category and region of enrolment. We analysed heterogeneity of the treatment effect by adding an interaction term to the models. Similar models, without the described baseline adjustments, were also used to assess the treatment effect across subgroups defined by median A/Cali HA- and B/Phuket HA-specific FcγRIIIa dimer binding antibody titer levels at baseline.

The associations between d3, d5 and d7 ordinal outcomes and antibody titers (IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, FcγR2a, FcγR3a, NKCAA, HAI), at baseline/d0 pre-infusion and d1 post-infusion were investigated using proportional odds logistic regression to estimate a summary odds ratio for being in a better category in both B/Yamagata and A/H1N1 infected participants. The multivariate proportional odds logistic models were adjusted for risk score at day 7 (for details see Ref. 8), baseline antibody level (for models of d1 antibody levels), and treatment group (IVIG/placebo).

Study approval

The INSIGHT 006: Flu-IVIG trial (NCT02287467) was an international, double-blinded, placebo-controlled clinical trial designed and conducted by the International Network for Strategic Initiatives in Global HIV trials (INSIGHT). This trial included 45 hospitals in Argentina, Australia, Demark, Greece, Mexico, Spain, Thailand, UK and the USA. All patients provided written informed consent and this trial was approved by the institutional ethics committee or review board at each clinical site.
Author contributions

HAV performed the experimental work, data interpretation and figure preparation. HAV, SJK and JDN contributed to study design. DNW, WMH, MGL and JDN were involved in data analysis and interpretation. HP and IB performed the HAI assays. RTD, DD, MJ, BA, CB and AM were involved in sample collection and the design of the INSIGHT 006: FLU-IVIG clinical trial. JB played a critical role in obtaining and overseeing the Flu-IVIG product. HAV and SJK conceived the study and wrote the manuscript. All authors contributed to preparation of the manuscript.

Acknowledgements

We would like to sincerely thank all of the participants in the clinical trial. We would like to thank Dr. Bruce Wines and Professor P. Mark Hogarth (Burnet Institute, Melbourne) who provided the recombinant soluble FcγR dimers and developed the FcγR dimer ELISA. We would also like to thank Dr Adam Wheatley and Robyn Esterbauer (University of Melbourne, Parkville) for providing the stabilized HA-stem and NA proteins. See Supplemental Acknowledgements for consortium details. Funding for this research was provided by Subcontract 13XS134 under Leidos Biomedical Research Prime Contract HHSN261200800001E and HHSN261201500003I, NCI/NIAID.

Figure legends
Figure 1. Flow diagram depicting the subset of patients from the INSIGHT 006 Flu-IVIG clinical trial that underwent detailed serological analyses. Of the 308 subjects included in the primary analysis, 84 (27%) had influenza B and 224 (73%) had influenza A. Of the 84 subjects with influenza B, 64 patients (21% of total subjects) were infected with a B/Yamagata lineage influenza virus. Of the 224 subjects with influenza A, 73 patients (24% of total subjects) were infected with an A/H1N1 influenza virus. Based on sample availability, serological analyses were performed with 62 sera samples from B/Yamagata infected patients (20% of total subjects) and 50 sera samples from A/H1N1 infected patients (16% of total subjects). In the analysed B/Yamagata infected subjects, 29 were infused with placebo and 33 infused with Flu-IVIG. In the analysed A/H1N1 infected subjects, 26 received placebo and 24 received Flu-IVIG.

Figure 2. Treatment with Flu-IVIG improves the odds of a more favourable clinical outcome in patients hospitalised with severe B/Yamagata influenza but not A/H1N1 influenza. Mean ordinal outcomes (A & B) and ordinal outcome distributions (C & D) at day 3 (d3), day 5 (d5) and day 7 (d7) post-infusion are shown for the Flu-IVIG and placebo infused patients infected with severe B/Yamagata influenza (Flu-IVIG n = 33 and placebo n = 29; A & C) and A/H1N1 influenza (Flu-IVIG n = 24 and placebo n = 26; B & D). The Flu-IVIG/placebo odds ratios (ORs) with 95% confidence intervals for the B/Yamagata and A/H1N1 infected subjects were calculated at d3, d5 and d7 post-infusion (E). A proportional odds model with adjustment for the patient's baseline clinical status was used to compare the Flu-IVIG and placebo treated groups. * P <0.05, *** P <0.001

Figure 3. Hemagglutination inhibition (HAI) titers day 1 post-infusion with influenza-specific hyperimmune immunoglobulin (Flu-IVIG) in patients hospitalised with severe
influenza. Pre-infusion (d0; open symbols) and post-infusion (d1; closed symbols) median HAI titers (with interquartile range) against the B/Phuket/3073/2013 virus (A) and the A/California/07/09(H1N1) virus (B) are shown for the placebo or Flu-IVIG infused B/Yamagata (Flu-IVIG n = 33 and placebo n = 29) and A/H1N1 (Flu-IVIG n = 24 and placebo n = 26) infected patients, respectively. Analysis of covariance, with the pre-infusion or d0 level as a covariate, was used to compare differences between the placebo and Flu-IVIG treatment groups at d1 post-infusion. The p-value represents the difference between treatment groups for log2 d1 post-infusion titer controlling for pre-infusion (d0) titer. The dashed line represents a HAI titer of 40, which is considered an important protective threshold for influenza and is generally defined as 50% protective against influenza virus infection. *** P < 0.001

Figure 4. FcγR binding antibody and antibody-dependent NK cell activation day 1 post-infusion with influenza-specific hyperimmune immunoglobulin (Flu-IVIG) in patients hospitalised with severe influenza. The FcγRIIIa dimer ELISA (A and B), the FcγRIIIa and FcγRIIa dimer bead-based multiplex (C-F) and the plate bound NK-92 cell activation assay (G and H) were used to analyse serum Fc functional antibody levels. Pre-infusion (d0; open symbols) and post-infusion (d1; closed symbols) median (with interquartile range) FcγR dimer binding and NK cell activation (CD107a+) against the B/Phuket/3073/2013 HA (left figure panels) and the A/California/07/09(H1N1) HA (right figure panels) were measured for the placebo or Flu-IVIG treated B/Yamagata (Flu-IVIG n = 33 and placebo n = 29) and A/H1N1 (Flu-IVIG n = 24 and placebo n = 26) infected patients, respectively. Analysis of covariance, with the pre-infusion or d0 level as a covariate, was used to compare differences between the placebo and Flu-IVIG treatment groups at d1 post-infusion. The p-value
represents the difference between treatment groups for log₂ d1 post-infusion titer, MFI or NK cell activation controlling for pre-infusion (d0) level. *** P < 0.001

Figure 5. Association between clinical outcome and HAI or FcγRIIIa binding antibody titer in B/Yamagata and A/H1N1 infected patients. (A) Based on post-infusion (d1) serum titers, patients with severe B/Yamagata (n = 62; blue) and A/H1N1 (n = 50; red) influenza were divided into high (≥ 40) and low (< 40) HAI titer groups irrespective of randomisation to Flu-IVIG or placebo. (B) Patients with severe B/Yamagata (n = 62; blue) and A/H1N1 (n = 50; red) influenza were also divided into high (≥ 160) and low (< 160) FcγRIIIa binding antibody titer groups regardless of treatment group. The association between HAI or FcγRIIIa binding antibody titer and day 5 (d5) post-infusion ordinal outcomes was investigated using univariate and multivariate proportional odds regression models, with the multivariate model adjusting for baseline antibody titer, treatment group (Flu-IVIG/placebo) and risk score at day 7. Odds ratios (ORs) are shown with 95% confidence intervals, with ORs greater than one indicating that the high antibody titer group has better odds of being in a more favourable clinical outcome category and ORs less than one favouring the low antibody group. * P < 0.05

Figure 6. Associations between influenza antibody features and clinical outcomes at day 5 post-infusion in patients hospitalised with severe B/Yamagata and A/H1N1 influenza. The association between antibody features and day 5 (d5) post-infusion ordinal outcomes were investigated using univariate and multivariate proportional odds regression models, with the multivariate model adjusting for baseline antibody level, treatment group (Flu-IVIG/placebo) and risk score at day 7. Heat maps show summary odds ratios (ORs) for patients hospitalised with B/Yamagata (n = 62; left side of heat map) and A/H1N1 (n = 50; right side of heat map) influenza at pre-infusion (A and C) and d1 post-infusion (B and D) timepoints generated.
using univariate (A and B) and multivariate (C and D) proportional odds regression models. ORs greater than one indicate that patients with higher antibody levels have improved odds of being in a better outcome category at d5 post-infusion and ORs less than one indicating that patients with lower antibody levels have improved odds of being in a better outcome category. * P <0.05, ** P <0.01

Figure 7. Treatment effect of Flu-IVIG in B/Yamagata infected patients with below and above median baseline FcγRIIIa binding antibody titers. Placebo (n = 29) and Flu-IVIG (n = 33) treated B/Yamagata infected patients were grouped by below median (≤ 160) or above median (>160) baseline (or pre-infusion) FcγRIIIa binding antibody titer. Mean ordinal outcomes (A) and ordinal outcome distributions (B) at day 3 (d3), day 5 (d5) and day 7 (d7) post-infusion are shown for the Flu-IVIG and placebo groups with below (≤ 160) or above (>160) median baseline FcγRIIIa binding antibody titers. The Flu-IVIG/placebo odds ratios (ORs) with 95% confidence intervals are shown for the below and above median FcγRIIIa binding antibody titer subgroups (C). A proportional odds regression model with adjustment for the patient's baseline clinical status was used to compare the Flu-IVIG and placebo treated subgroups. ORs greater than one indicate that patients infused with Flu-IVIG have better odds of being in a more favourable clinical outcome category, whereas ORs less than one favour placebo infusion. * P <0.05, ** P <0.01

Figure 8. Treatment effect of Flu-IVIG in A/H1N1 infected patients with below and above median baseline FcγRIIIa binding antibody titers. Placebo (n = 26) and Flu-IVIG (n = 24) treated A/H1N1 infected patients were grouped into below median (≤ 80) or above median (>80) baseline (or pre-infusion) FcγRIIIa binding antibody titer. Mean ordinal outcomes (A) and ordinal outcome distributions (B) at day 3 (d3), day 5 (d5) and day 7 (d7) post-infusion
are shown for the Flu-IVIG and placebo infused patients with below median (≤ 80) or above median (> 80) baseline FcγRIIIa binding antibody titers. The Flu-IVIG/placebo odds ratios (ORs) with 95% confidence intervals are shown for the below and above median FcγRIIIa binding antibody titer subgroups (C). A proportional odds model with adjustment for the patient's baseline clinical status was used to compare the Flu-IVIG and placebo treated subgroups. ORs greater than one indicate that patients infused with Flu-IVIG have better odds of being in a more favourable clinical outcome category, whereas ORs less than one favour placebo infusion * P <0.05, ** P <0.01

Supplemental Figure legends

Supplemental Figure 1. Neutralizing antibody titers and HA stem-specific IgG day 1 post-infusion with influenza-specific hyperimmune immunoglobulin (Flu-IVIG) in patients hospitalised with influenza B. Pre-infusion (d0; open symbols) and post-infusion (d1; closed symbols) median neutralizing antibody titer (with interquartile range) by microneutralization assay (MNA) against the B/Phuket/3073/2013 virus (A) and median fluorescence intensity (MFI; with interquartile range) of total IgG against the B/Phuket/3073/2013 HA stem (B) are shown for the placebo (n = 29) or Flu-IVIG (n = 33) infused B/Yamagata patients. Analysis of covariance, with the pre-infusion or d0 level as a covariate, was used to compare differences between the placebo and Flu-IVIG treatment groups at d1 post-infusion. The p-value represents the difference between treatment groups for log₂ d1 post-infusion titer or MFI controlling for pre-infusion (d0) titer or MFI. *** P < 0.001

Supplemental Figure 2. Correlation between HAI and HA-specific FcγRIIIa cross-linking antibody titer in B/Yamagata and A/H1N1 infected patients treated with Flu-IVIG or placebo.
Spearman correlations between HAI and HA-specific FcγRIIIa cross-linking antibody titers in pre-infusion (d0) and day 1 (d1) post-infusion serum samples following treatment with Flu-IVIG or placebo in B/Yamagata (n = 62; A) and A/H1N1 (n = 50; B) infected patients are shown. Some points represent multiple superimposed patient samples, who have identical HAI and FcγRIIIa cross-linking antibody titers.

Supplemental Figure 3. Correlation between HA-specific FcγRIIIa cross-linking antibody and NK cell activation in B/Yamagata and A/H1N1 infected patients treated with Flu-IVIG or placebo. Spearman correlations are shown between NK cell activation (%CD107a+ NK-92-FcγRIIIa-GFP cells) and HA-specific FcγRIIIa cross-linking antibody titers detected by ELISA in pre- and day 1 (d1) post-infusion serum samples following treatment with Flu-IVIG or placebo in B/Yamagata (n = 62; A) and A/H1N1 (n = 50; B) infected patients. Spearman correlations between NK cell activation and median fluorescence intensity (MFI) of HA-specific FcγRIIIa cross-linking antibody detected by bead-based multiplex pre- and day 1 (d1) post-infusion serum samples following treatment with Flu-IVIG or placebo in B/Yamagata (n = 62; C) and A/H1N1 (n = 50; D) infected patients are also shown.

Supplemental Figure 4. NA-specific FcγR binding day 1 post-infusion with Flu-IVIG in patients hospitalised with severe influenza B. A bead-based FcγR dimer multiplex was used to examine the median fluorescence intensity (MFI) of NA-specific FcγRIIIa and FcγRIIa binding antibody in patient sera. Pre-infusion (d0; open symbols) and post-infusion (d1; closed symbols) FcγRIIIa dimer binding (A) and FcγRIIa dimer binding (B) median MFI with interquartile range against the B/Phuket/3073/2013 NA were measured for the placebo (n = 29) or Flu-IVIG (n = 33) treated B/Yamagata infected patients. Analysis of covariance, with the pre-infusion or d0 level as a covariate, was used to compare differences between the
placebo and Flu-IVIG treatment groups at d1 post-infusion. The p-value represents the
difference between treatment groups for log₂ d1 post-infusion controlling for pre-infusion
(d0) MFI. *** P < 0.001

Supplemental Figure 5. HA-specific IgG subclasses following treatment with Flu-IVIG in
patients hospitalised with severe influenza. A bead-based IgG subclass multiplex was used to
determine the median fluorescence intensity (MFI) of HA-specific IgG subclasses in patient
sera. Pre-infusion (d0; open symbols) and post-infusion (d1; closed symbols) median MFI
with interquartile range for IgG1 (A & B), IgG2 (C & D), IgG3 (E & F) and IgG4 (G & H)
against the B/Phuket/3073/2013 HA (left figure panels) or the A/California/07/2009(H1N1)
HA (right figure panels) were measured for the placebo or Flu-IVIG treated B/Yamagata
(Flu-IVIG n = 33 and placebo n = 29) and A/H1N1 (Flu-IVIG n = 24 and placebo n = 26)
infected patients, respectively. Analysis of covariance, with the pre-infusion or d0 level as a
covariate, was used to compare differences between the placebo and Flu-IVIG treatment
groups at d1 post-infusion. The p-value represents the difference between treatment groups
for log₂ d1 post-infusion controlling for pre-infusion (d1) MFI. ** P <0.01, *** P < 0.001

Supplemental Figure 6. NA-specific IgG subclasses day 1 post-infusion with Flu-IVIG in
patients hospitalised with severe influenza B. A bead-based IgG subclass multiplex was used
to examine the median fluorescence intensity (MFI) of NA-specific IgG subclasses in patient
sera. Pre-infusion (d0; open symbols) and post-infusion (d1; closed symbols) median MFI
with interquartile range for IgG1 (A), IgG2 (B), IgG3 (C) and IgG4 (D) against the
B/Phuket/3073/2013 NA were measured for the placebo (n = 29) or Flu-IVIG (n = 33) treated
B/Yamagata infected patients. Analysis of covariance, with the pre-infusion or d0 level as a
covariate, was used to compare differences between the placebo and Flu-IVIG treatment
Supplemental Figure 7. NA-specific IgG subclasses day 1 post-infusion with Flu-IVIG in patients hospitalised with severe influenza A. A bead-based IgG subclass multiplex was used to examine the median fluorescence intensity (MFI) of NA-specific IgG subclasses in patient sera. Pre-infusion (d0; open symbols) and post-infusion (d1; closed symbols) median MFI with interquartile range for IgG1 (A), IgG2 (B), IgG3 (C) and IgG4 (D) against the A/California/07/2009(H1N1) NA were measured for the placebo (n = 26) or Flu-IVIG (n = 24) treated A/H1N1 infected patients. Analysis of covariance, with the pre-infusion or d0 level as a covariate, was used to compare differences between the placebo and Flu-IVIG treatment groups at d1 post-infusion. The p-value represents the difference between treatment groups for log2 d1 post-infusion controlling for pre-infusion (d0) MFI. *** P < 0.001

Supplemental Figure 8. Associations between influenza antibody features and clinical outcomes at day 3 post-infusion in patients hospitalised with severe B/Yamagata and A/H1N1 influenza. The association between antibody features and day 3 (d3) post-infusion ordinal outcomes were investigated using univariate and multivariate proportional odds regression models, with the multivariate model adjusting for baseline antibody level, treatment group (Flu-IVIG/placebo) and risk score at day 7. Heat maps show summary odds ratios (ORs) for patients hospitalised with B/Yamagata (n = 62; left side of heat map) and A/H1N1 (n = 50; right side of heat map) influenza at pre-infusion (A and C) and d1 post-infusion (B and D) timepoints generated using univariate (A and B) and multivariate (C and D) proportional odds regression models. ORs greater than one indicate that patients with higher antibody levels have improved odds of being in a better outcome category at d3 post-
infusion and ORs less than one indicate that patients with lower antibody levels have improved odds of being in a better outcome category. * P <0.05, ** P <0.01

Supplemental Figure 9. Associations between influenza antibody features and clinical outcomes at day 7 post-infusion in patients hospitalised with severe B/Yamagata and A/H1N1 influenza. The association between antibody features and day 7 (d7) post-infusion ordinal outcomes were investigated using univariate and multivariate proportional odds regression models, with the multivariate model adjusting for baseline antibody level, treatment group (Flu-IVIG/placebo) and risk score at day 7. Heat maps show summary odds ratios (ORs) for patients hospitalised with B/Yamagata (n = 62; left side of heat map) and A/H1N1 (n = 50; right side of heat map) influenza at pre-infusion (A and C) and d1 post-infusion (B and D) timepoints generated using univariate (A and B) and multivariate (C and D) proportional odds regression models. ORs greater than one indicate that patients with higher antibody levels have improved odds of being in a better outcome category at d7 post-infusion and ORs less than one indicate that patients with lower antibody levels have improved odds of being in a better outcome category. * P <0.05, ** P <0.01

Supplemental Figure 10. Associations between NA-specific influenza antibody features and clinical outcomes in patients hospitalised with severe influenza B. The association between antibody features and (A) day 3 (d3), (B) day 5 (d5) and (C) day 7 (d7) post-infusion ordinal outcomes were investigated using univariate and multivariate proportional odds regression models, with the multivariate model adjusting for baseline antibody level, treatment group (Flu-IVIG/placebo) and risk score at day 7. Heat maps show summary odds ratios (ORs) for patients hospitalised with B/Yamagata influenza (n = 62) at pre-infusion (left side of heat map) and d1 post-infusion (right side of heat map) timepoints generated using univariate
997 (right figure panel) and multivariate (left figure panel) proportional odds regression models.
998 ORs greater than one indicate that patients with higher antibody levels have improved odds of
999 being in a better outcome category at the post-infusion timepoint indicated, whereas ORs less
1000 than one indicate that patients with lower antibody levels have improved odds of being in a
1001 better outcome category. * P <0.05

1002

1003 **Supplemental Figure 11.** Serum concentration of interleukin-6 (IL-6) day 1 post-infusion
1004 with Flu-IVIG in patients hospitalised with severe influenza. A bead-based multiplex was
1005 used to determine the concentration of IL-6 in patient sera. Pre-infusion (d0; open symbols)
1006 and post-infusion (d1; closed symbols) median concentrations of IL-6 with interquartile
1007 ranges were measured for the placebo or Flu-IVIG treated (A) B/Yamagata (Flu-IVIG n = 33
1008 and placebo n = 29) and (B) A/H1N1 (Flu-IVIG n = 24 and placebo n = 26) infected patients.
1009 Analysis of covariance, with the pre-infusion or d0 concentration as a covariate, was used to
1010 compare differences between the placebo and Flu-IVIG treatment groups at d1 post-infusion.
1011 The p-value represents the difference between treatment groups for log2 d1 post-infusion
1012 controlling for pre-infusion (d1) IL-6 concentration. *** P < 0.001
Table 1. Cohort characteristics for B/Yamagata and A/H1N1 groups

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Baseline Characteristics by Flu Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH1N1 (n=50)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>< 40 years</td>
<td>10</td>
</tr>
<tr>
<td>40-59 years</td>
<td>26</td>
</tr>
<tr>
<td>≥ 60 years</td>
<td>14</td>
</tr>
<tr>
<td>median (IQR)</td>
<td>52 (45, 62)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>20</td>
</tr>
<tr>
<td>female</td>
<td>30</td>
</tr>
<tr>
<td>Enrollment ward</td>
<td></td>
</tr>
<tr>
<td>ICU</td>
<td>3</td>
</tr>
<tr>
<td>Ward on O₂</td>
<td>22</td>
</tr>
<tr>
<td>Ward no O₂</td>
<td>25</td>
</tr>
<tr>
<td>Days from onset</td>
<td></td>
</tr>
<tr>
<td>≤ 3</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>≥ 5</td>
<td>14</td>
</tr>
<tr>
<td>median (IQR)</td>
<td>3 (3, 5)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
</tr>
<tr>
<td>North/South America</td>
<td>31</td>
</tr>
<tr>
<td>Europe, Australia</td>
<td>3</td>
</tr>
<tr>
<td>Thailand</td>
<td>16</td>
</tr>
<tr>
<td>NEW score</td>
<td></td>
</tr>
<tr>
<td>< 2</td>
<td>4</td>
</tr>
<tr>
<td>2-3</td>
<td>20</td>
</tr>
<tr>
<td>4-5</td>
<td>12</td>
</tr>
<tr>
<td>≥ 6</td>
<td>14</td>
</tr>
<tr>
<td>median (IQR)</td>
<td>4 (3, 6)</td>
</tr>
<tr>
<td>Sepsis</td>
<td></td>
</tr>
<tr>
<td>Season</td>
<td></td>
</tr>
<tr>
<td>Oct 2014-Sep 2015</td>
<td>0</td>
</tr>
<tr>
<td>Oct 2015-Sep 2016</td>
<td>23</td>
</tr>
<tr>
<td>Oct 2016-Sep 2017</td>
<td>8</td>
</tr>
<tr>
<td>Oct 2017-May 2018</td>
<td>19</td>
</tr>
</tbody>
</table>
References

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
Figure 1. Flow diagram depicting the subset of patients from the INSIGHT 006 Flu-IVIG clinical trial that underwent detailed serological analyses. Of the 308 subjects included in the primary analysis, 84 (27%) had influenza B and 224 (73%) had influenza A. Of the 84 subjects with influenza B, 64 patients (21% of total subjects) were infected with a B/Yamagata lineage influenza virus. Of the 224 subjects with influenza A, 73 patients (24% of total subjects) were infected with an A/H1N1 influenza virus. Based on sample availability, serological analyses were performed with 62 sera samples from B/Yamagata infected patients (20% of total subjects) and 50 sera samples from A/H1N1 infected patients (16% of total subjects). In the analysed B/Yamagata infected subjects, 29 were infused with placebo and 33 infused with Flu-IVIG. In the analysed A/H1N1 infected subjects, 26 received placebo and 24 received Flu-IVIG.
Figure 2

A B/Yamagata infected patients
Mean ordinal outcomes

B A/H1N1 infected patients
Mean ordinal outcomes

C B/Yamagata infected patients
Ordinal outcome distribution

D A/H1N1 infected patients
Ordinal outcome distribution

E B/Yamagata and A/H1N1 infected subjects
Proportional odds analysis of outcome

Infection type

Proportional odds analysis of outcome

- A/H1N1
- B/Yamagata

Days post-infusion

- d3
- d5
- d7

Mean ordinal outcome

- Placebo
- Flu-IVIG

Cumulative percent in category

- Better
- Worse

Days post-infusion

- B/Yamagata
- A/H1N1

Flu-IVIG/placebo odds ratio (OR)

- 0.01
- 0.1
- 1
- 10
- 100

- 1 Death
- 2 ICU
- 3 Hospital with O2
- 4 Hospital no O2
- 5 Discharged
- 6 Back to normal

- *
- **
- ***
Figure 2. Treatment with Flu-IVIG improves the odds of a more favourable clinical outcome in patients hospitalised with severe B/Yamagata influenza but not A/H1N1 influenza. Mean ordinal outcomes (A & B) and ordinal outcome distributions (C & D) at day 3 (d3), day 5 (d5) and day 7 (d7) post-infusion are shown for the Flu-IVIG and placebo infused patients infected with severe B/Yamagata influenza (Flu-IVIG n = 33 and placebo n = 29; A & C) and A/H1N1 influenza (Flu-IVIG n = 24 and placebo n = 26; B & D). The Flu-IVIG/placebo odds ratios (ORs) with 95% confidence intervals for the B/Yamagata and A/H1N1 infected subjects were calculated at d3, d5 and d7 post-infusion (E). A proportional odds model with adjustment for the patient's baseline clinical status was used to compare the Flu-IVIG and placebo treated groups. * P <0.05, *** P <0.001
Figure 3. Hemagglutination inhibition (HAI) titers day 1 post-infusion with influenza-specific hyperimmune immunoglobulin (Flu-IVIG) in patients hospitalised with severe influenza. Pre-infusion (d0; open symbols) and post-infusion (d1; closed symbols) median HAI titers (with interquartile range) against the B/Phuket/3073/2013 virus (A) and the A/California/07/2009(H1N1) virus (B) are shown for the placebo or Flu-IVIG infused B/Yamagata (Flu-IVIG n = 33 and placebo n = 29) and A/H1N1 (Flu-IVIG n = 24 and placebo n = 26) infected patients, respectively. Analysis of covariance, with the pre-infusion or d0 level as a covariate, was used to compare differences between the placebo and Flu-IVIG treatment groups at d1 post-infusion. The p-value represents the difference between treatment groups for log₂ d1 post-infusion titer controlling for pre-infusion (d0) titer. The dashed line represents a HAI titer of 40, which is considered an important protective threshold for influenza and is generally defined as 50% protective against influenza virus infection. *** P < 0.001
Figure 4. FcγR binding antibody and antibody-dependent NK cell activation day 1 post-infusion with influenza-specific hyperimmune immunoglobulin (Flu-IVIG) in patients hospitalised with severe influenza. The FcγRIIIa dimer ELISA (A and B), the FcγRIIIa and FcγRIIa dimer bead-based multiplex (C-F) and the plate bound NK-92 cell activation assay (G and H) were used to analyse serum Fc functional antibody levels. Pre-infusion (d0; open symbols) and post-infusion (d1; closed symbols) median (with interquartile range) FcγR dimer binding and NK cell activation (CD107a+) against the B/Phuket/3073/2013 HA (left figure panels) and the A/California/07/09(H1N1) HA (right figure panels) were measured for the placebo or Flu-IVIG treated B/Yamagata (Flu-IVIG n = 33 and placebo n = 29) and A/H1N1 (Flu-IVIG n = 24 and placebo n = 26) infected patients, respectively. Analysis of covariance, with the pre-infusion or d0 level as a covariate, was used to compare differences between the placebo and Flu-IVIG treatment groups at d1 post-infusion. The p-value represents the difference between treatment groups for log₂ d1 post-infusion titer, MFI or NK cell activation controlling for pre-infusion (d0) level. *** P < 0.001
Figure 5. Association between clinical outcome and HAI or FcγRIIIa binding antibody titer in B/Yamagata and A/H1N1 infected patients. (A) Based on post-infusion (d1) serum titers, patients with severe B/Yamagata (n = 62; blue) and A/H1N1 (n = 50; red) influenza were divided into high (≥40) and low (<40) HAI titer groups irrespective of randomisation to Flu-IVIG or placebo. (B) Patients with severe B/Yamagata (n = 62; blue) and A/H1N1 (n = 50; red) influenza were also divided into high (≥160) and low (<160) FcγRIIIa binding antibody titer groups regardless of treatment group. The association between HAI or FcγRIIIa binding antibody titer and day 5 (d5) post-infusion ordinal outcomes was investigated using univariate and multivariate proportional odds regression models, with the multivariate model adjusting for baseline antibody titer, treatment group (Flu-IVIG/placebo) and risk score at day 7. Odds ratios (ORs) are shown with 95% confidence intervals, with ORs greater than one indicating that the high antibody titer group has better odds of being in a more favourable clinical outcome category and ORs less than one favouring the low antibody group. * P <0.05
Figure 6. Associations between influenza antibody features and clinical outcomes at day 5 post-infusion in patients hospitalised with severe B/Yamagata and A/H1N1 influenza. The association between antibody features and day 5 (d5) post-infusion ordinal outcomes were investigated using univariate and multivariate proportional odds regression models, with the multivariate model adjusting for baseline antibody level, treatment group (Flu-IVIG/placebo) and risk score at day 7. Heat maps show summary odds ratios (ORs) for patients hospitalised with B/Yamagata (n = 62; left side of heat map) and A/H1N1 (n = 50; right side of heat map) influenza at pre-infusion (A and C) and d1 post-infusion (B and D) timepoints generated using univariate (A and B) and multivariate (C and D) proportional odds regression models. ORs greater than one indicate that patients with higher antibody levels have improved odds of being in a better outcome category at d5 post-infusion and ORs less than one indicating that patients with lower antibody levels have improved odds of being in a better outcome category. * P <0.05, ** P <0.01.
Figure 7

A

B/Phuket/3073/2013 HA
FcγRlla Ab titres and mean ordinal outcome

Baseline (d0) FcγRlla dimer binding Ab titre below or above median

Mean ordinal outcome

Baseline (d0) FcγRlla dimer binding Ab titre below or above median

B

B/Phuket/3073/2013 HA
FcγRlla Ab titres and ordinal outcome distribution

Baseline (d0) FcγRlla dimer binding Ab titre below or above median

C

B/Yamagata infected subjects
Proportional odds subgroup analysis of outcome

Baseline (d0) FcγRlla dimer binding Ab titre at baseline (d0)
Figure 7. Treatment effect of Flu-IVIG in B/Yamagata infected patients with below and above median baseline FcγRIIIa binding antibody titers. Placebo (n = 29) and Flu-IVIG (n = 33) treated B/Yamagata infected patients were grouped by below median (≤ 160) or above median (>160) baseline (or pre-infusion) FcγRIIIa binding antibody titer. Mean ordinal outcomes (A) and ordinal outcome distributions (B) at day 3 (d3), day 5 (d5) and day 7 (d7) post-infusion are shown for the Flu-IVIG and placebo groups with below (≤ 160) or above (>160) median baseline FcγRIIIa binding antibody titers. The Flu-IVIG/placebo odds ratios (ORs) with 95% confidence intervals are shown for the below and above median FcγRIIIa binding antibody titer subgroups (C). A proportional odds regression model with adjustment for the patient's baseline clinical status was used to compare the Flu-IVIG and placebo treated subgroups. ORs greater than one indicate that patients infused with Flu-IVIG have better odds of being in a more favourable clinical outcome category, whereas ORs less than one favour placebo infusion. * P <0.05, ** P <0.01
Figure 8

A

A/California/07/2009 HA

Fc\(^{\gamma}\)RIIa Ab titre and mean ordinal outcome

Baseline (d0) Fc\(^{\gamma}\)RIIa dimer binding Ab titre below or above median

Mean ordinal outcome

- **below** ≤80
- **above** >80

Placebo

Flu-IVIG

B

A/California/07/2009 HA

Fc\(^{\gamma}\)RIIa Ab titre and ordinal outcome distribution

Baseline (d0) Fc\(^{\gamma}\)RIIa dimer binding Ab titre below or above median

Cumulative percent in category

- **Better**
- **Worse**

P IVIG

C

A/H1N1 infected subjects

Proportional odds subgroup analysis of outcome

Baseline (d0) Fc\(^{\gamma}\)RIIa dimer binding Ab titre at baseline (d0)

Flu-IVIG/placebo odds ratio (OR)

- **above** >80
- **below** ≤80

Flu-IVIG

Placebo

\(* p=0.07\)
Figure 8. Treatment effect of Flu-IVIG in A/H1N1 infected patients with below and above median baseline FcγRIIIa binding antibody titers. Placebo (n = 26) and Flu-IVIG (n = 24) treated A/H1N1 infected patients were grouped into below median (≤ 80) or above median (> 80) baseline (or pre-infusion) FcγRIIIa binding antibody titer. Mean ordinal outcomes (A) and ordinal outcome distributions (B) at day 3 (d3), day 5 (d5) and day 7 (d7) post-infusion are shown for the Flu-IVIG and placebo infused patients with below median (≤ 80) or above median (> 80) baseline FcγRIIIa binding antibody titers. The Flu-IVIG/placebo odds ratios (ORs) with 95% confidence intervals are shown for the below and above median FcγRIIIa binding antibody titer subgroups (C). A proportional odds model with adjustment for the patient's baseline clinical status was used to compare the Flu-IVIG and placebo treated subgroups. ORs greater than one indicate that patients infused with Flu-IVIG have better odds of being in a more favourable clinical outcome category, whereas ORs less than one favour placebo infusion * P <0.05, ** P <0.01