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ABSTRACT  1 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the pandemic Coronavirus 2 

Disease 2019 (COVID-19) and now many face the burden of prolonged symptoms—long-lasting COVID-3 

19 symptoms or “long-COVID”. Long-COVID is thought to be linked to immune dysregulation due to 4 

harmful inflammation, with the exact causes being unknown. Given the role of the microbiome in 5 

mediating inflammation, we aimed to examine the relationship between the oral microbiome and the 6 

duration of long-COVID symptoms. Tongue swabs were collected from patients presenting with 7 

symptoms concerning for COVID-19. Confirmed infections were followed until resolution of all 8 

symptoms. Bacterial composition was determined by metagenomic sequencing. We used random forest 9 

modeling to identify microbiota and clinical covariates that associated with long-COVID symptoms. Of 10 

the patients followed, 63% (17/27) developed ongoing symptomatic COVID-19 and 37% (10/27) went on 11 

to long-COVID. Patients with prolonged symptoms had significantly higher abundances of microbiota 12 

that induce inflammation, such as members of the genera Prevotella and Veillonella. Of note are species 13 

that produce lipopolysaccharides and the similarity of long-COVID patients’ oral microbiome to those of 14 

patients with chronic fatigue syndrome. All together, we our findings suggest an association with the oral 15 

microbiome and long-COVID revealing the possibility that dysfunction of the oral microbiome may 16 

contribute to this draining disease.    17 

 18 

 19 
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INTRODUCTION 24 

The oral cavity holds the second largest microbial community in the human body, after the gut, with over 25 

1,000 species of commensal bacteria residing in the oral cavity (1). Dysbiosis or disrupted homeostasis 26 

caused by an imbalance in the microflora in the oral cavity has been linked to many other systemic 27 

inflammatory or infectious diseases (2). There is mounting evidence that links oral bacterial species to 28 

systemic diseases including pneumonia (1, 3, 4). Bacteria in the oral cavity may promote respiratory 29 

infections either directly via aspiration or indirectly by enzyme production that may hinder pathogen 30 

clearance, promote lung colonization or alter respiratory epithelial immune responses (5). 31 

 32 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current 33 

coronavirus disease 2019 (COVID-19) pandemic. This pandemic began in early 2020 and has seen over 34 

half a million deaths in the US alone (6). Building upon the body of evidence that the microbiome plays 35 

a role in the regulation of innate and adaptive immunity to viral infections (7, 8) studies done early in the 36 

pandemic have demonstrated a connection with an altered gut microbiome and the severity of COVID-19 37 

disease (9, 10). Additionally, among COVID-19 patients there has been a large number of coinfection 38 

cases with organisms that originate from the oral cavity (11).  Recently, decreased oral microbiome 39 

diversity and increased dysbiotic species abundances have been identified as predictive of COVID-19 40 

disease (12). This has raised the possibility of using the oral microbiome to diagnose SARS-CoV-2 41 

infection, however studies linking the observed dysbiotic oral microbiota to disease outcomes have been 42 

lacking. Also lacking is evidence that this COVID-related microbiome, which occurs early in the disease 43 

process, is predictive of key outcomes such as symptom duration.    44 

 45 

Most hospitalized patients have persistent long-lasting symptoms that can take weeks to resolve (13) and 46 

negatively impact health-related quality of life (14). Symptoms persisting greater than 4 weeks after an 47 

acute infection are called ongoing symptomatic COVID-19, as characterized by The British National 48 

Institute for Health and Care Excellence (NICE) (15). Symptoms lasting even longer, 8-12 weeks or 49 



greater (16) and characterized by symptoms of fatigue, headache, dyspnea, and anosmia (17, 18), are 50 

termed long-lasting COVID-19 symptoms (long-COVID). Long-COVID does not currently have a strict 51 

definition (19).  At the 10-week mark after SARS-CoV-2 infection, more than 50% of long COVID 52 

patients suffer profound fatigue (20). Increasing age, body mass index, and female gender are known to 53 

associate with long-COVID (16). It is currently unknown why most people recover fully within two to 54 

three weeks and others experience symptoms for weeks or months longer (21). There is evidence, 55 

however, of persistently perturbed inflammatory pathways long after the acute SARS-CoV-2 infection 56 

has subsided (22). 57 

 58 

Given the emerging associations between the human microbiome and SARS-CoV-2 infection and the 59 

unknown driver for COVID-19 patients suffering from long lasting symptoms, we sought to explore if 60 

oral microbiome dysbiosis associates with ongoing symptoms among post-hospitalized COVID-19 61 

patients. Accordingly, we enrolled a cohort of SARS-CoV-2 PCR positive COVID-19 patients from one 62 

US Emergency Department, collecting oral swabs early in the disease course, and followed them for 4- 63 

and 10-week symptom resolution outcomes. We analyzed oral microbiome composition by shotgun 64 

metagenomic sequencing. Our findings uniquely describe how dysbiosis of the oral microbiome may play 65 

a pivotal role in lengthening symptom duration leading to the long-COVID syndrome. 66 

 67 

RESULTS 68 

Patient Population 69 

From a prospective sampling of 164 patients presenting with COVID symptoms over a 9-month period, 70 

84 (51.2%) tested positive by PCR for SARS-CoV-2. Of these patients 27 were successfully contacted for 71 

follow-up at both 4 and 10 weeks (Figure 1). Average age was 62.6 (sd 12.5) with 70.4% men, 66.7% 72 

white, 7.4% African American and 25.9% Hispanic. Among the cohort for high-risk medical 73 

comorbidities 16 (59.3%) had hypertension, 8 (29.6%) diabetes, and 5 (18.5%) chronic obstructive 74 

pulmonary disease. Neither of these medical comorbidities nor the patients’ Charlson Comorbidity Index 75 



(CCI) scores differed by symptom duration outcome (Table 1). None of these patients lived in the same 76 

household. All these patients were admitted to the hospital with 4 (14.8%) admitted to the ICU. The 77 

average hospital length of stay was 8.3 (sd 7.7) days with 85.2% requiring oxygen and 25.9% getting 78 

advanced oxygen delivery by high flow or positive airway pressure. Two patients were intubated with an 79 

endotracheal tube.    80 

 81 

Symptom Duration 82 

The average length of symptom duration was 45.8 days (sd 30.4) with 14 patients (51.9%) experiencing 83 

continuation of symptoms after 4 weeks from disease onset, and 10 patients (37.0%) experiencing 84 

symptoms longer than 10 weeks. The symptoms that lasted the longest were respiratory in nature (81.5% 85 

cough or short of breath) followed by fatigue (55.6%), gastrointestinal symptoms (14.8%), confusion or 86 

“brain fog” (22.2%) and ageusia or anosmia (14.8%). Brain fog is a symptom more recently linked to 87 

long-COVID characterized by lack of clear memory or ability to focus (23, 24). There were no significant 88 

differences in demographics, medical history, or hospital treatments among the 2 outcomes categories 89 

(Table 1). However, among patients with symptoms lasting longer than 10 weeks, fatigue and brain fog 90 

were the most prominent symptoms that lasted the longest duration. 91 

 92 

Oral Microbiome Composition Predicts Ongoing Symptomatic COVID-19 93 

We set out to explore the associations of oral microbiome composition with the symptoms of ongoing 94 

symptomatic COVID-19 disease. To do this we profiled the oral microbiome of subjects with acute 95 

COVID-19 infection using shotgun metagenomic sequencing (See Methods). Microbial species 96 

abundances were determined by running Metaphlan3 (25). We estimated microbiome alpha diversity by 97 

calculating Shannon diversity index (26). We started by applying unsupervised learning methods, such as 98 

Principle Coordinate analysis (PCoA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) and, as 99 

expected, found that interindividual variability overwhelmingly accounted for the majority of the 100 

information in the data (Figure S1). PERMANOVA analysis on samples classified according to COVID-101 



19 symptoms duration was not statistically significant (p-value <0.05).  We then applied random-forest 102 

classification (RFC) (27, 28) to identify microbiome and clinical features associated with ongoing disease. 103 

Feature selection was performed using the Boruta algorithm on five-fold cross-validated data and then 104 

running RFC using the union of the Boruta selected features on the same five-fold cross-validated data to 105 

estimate model performance (29). We compared classification accuracy for different models that were 106 

trained (i) only on demographics + clinical data, (ii) only on microbiome species abundances, (iii) only 107 

on Shannon Diversity, (iv) on demographics + clinical data + Shannon Diversity, (v) on demographics + 108 

clinical data + microbiome species + Shannon Diversity and, (vi) on clinical data + microbiome species + 109 

Shannon Diversity (Figure 2A).  Each model was run starting from 10 different random seeds to calculate 110 

appropriate performance statistics. The mean F1 score, the harmonic mean of precision and recall, was 111 

used to select the top performing model for a given outcome. The best model—clinical data + microbiome 112 

species + Shannon Diversity—performed with a mean F1 score of 0.751 (Figure 2A).  113 

 114 

Specific microbial members had the greatest contribution to correctly classifying samples. We detected 115 

both bacterial and eukaryotic organisms in the oral microbiome analysis with only bacteria demonstrating 116 

associations with the outcomes. We examined the 19 bacterial species whose abundances were associated 117 

with ongoing symptomatic COVID-19 disease and two clinical covariates based on their median RFC-118 

estimated permutated importance score over the 10 RFC pipeline iterations (Figure 2B, C). The model 119 

finds both viral load and Shannon Diversity to be of moderate importance, while specific microbiome 120 

members contributed most to correct sample prediction.  In particular, two of the three top predictors 121 

(Veillonella dispar and Veillonella infantium) as well as 2 other species associated with ongoing 122 

symptomatic COVID-19 disease belong the genus Veillonella. Members of this genus are gram-negative 123 

anaerobic coccus that can cause infection in humans(30). Specifically, V. infantium has been found in the 124 

bronchoalveolar lavage fluid of the COVID-19 patients suggesting it is a significant co-infectious agent 125 

(31). Other pathobionts (organisms that can co-exist or cause disease under certain circumstances) such 126 

as Solobacterium moorei (32, 33), Streptococcus infantis(34), and Rothia dentocariosa (35) were in higher 127 



abundances in ongoing symptomatic COVID-19 disease patients. Interestingly, S. infantis has been found 128 

to be enriched in fecal samples from COVID-19 patients(9) and R. dentocariosa was predictive of SARS-129 

CoV-2 presence in hospital rooms (36). 130 

 131 

In addition to being implicated in co-infection, the Veillonella species are also known to produce a large 132 

amount of lipopolysaccharides (LPS) (37). Another pattern from this data that emerges is the higher 133 

abundances of other LPS-producing species are predictive of ongoing symptomatic COVID-19 disease. 134 

Five members of the Prevotella genus are positively associated with ongoing symptomatic disease in our 135 

analysis. Prevotella exhibits increased inflammatory properties (38) and has been thought to be a clinically 136 

important pathobiont involved in promoting chronic inflammation (39, 40). Other pro-inflammatory 137 

species such as Leptotrichia wadei (12) also are in higher abundances in patients with a longer symptom 138 

duration.  139 

 140 

Dysbiotic Inflammatory Type Oral Microbiome Associates with the Development of Long-COVID-141 

19 Syndrome 142 

We repeated our machine learning-based analysis described above to predict long-COVID outcome from 143 

microbial abundance and clinical covariates. RFC was not able to capture any signal in the data for models 144 

that lacked microbiome information (i.e. i, iii, and iv in Figure 2A). The top performing RFC for long-145 

COVID was the one trained on data on clinical data + microbiome species, resulting in an F1 score on 146 

0.615 (Figure 3A). From the modeling we identified 29 different bacterial species whose abundances 147 

were associated with long-COVID (Figure 3B). Similar to ongoing symptomatic COVID, multiple 148 

Veillonella species were associated with long-COVID. Several of the top predicting species (4 out of 29) 149 

belong to the genus Actinomyces. Actinomyces cause actinomycosis, a rare infectious disease in which 150 

bacteria can spread to the respiratory tract causing inflammation (41). As with ongoing symptomatic 151 

COVID-19, multiple Prevotella species (38) are associated with long-COVID. Prevotella species are 152 

overrepresented in COVID-19 patients and are thought to produce proteins that can promote SARS-CoV-153 



2 infection and increase clinical severity of COVID-19 disease (42). Additional species known to cause 154 

infections such as Streptococcus anginosus group bacteria that have been reported to be particularly 155 

important in the pathogenesis of respiratory infections (43) and Gemella sanguinis, which has been shown 156 

to cause bloodstream infections in COVID-19 patients (44) were also found to be associated with long-157 

COVID.  158 

 159 

Inflammatory Metabolic Pathways Associate with Ongoing Symptomatic and Long-COVID Disease 160 

States 161 

Building upon the taxonomy analysis, we explored the metabolic pathways and their association with 162 

ongoing symptomatic and long-COVID disease states using HUMAnN3(45). For each outcome we again 163 

performed RFC analysis and compared classification accuracy for different trained models: (i) 164 

demographics + clinical data + relative pathway abundances and (ii) only relative pathway abundances. 165 

For both ongoing symptomatic COVID and long-COVID, the top performing model was (ii), producing 166 

an F1 score of 0.814 and 0.689, respectively (Figure 4A, 5A). We identified >40 metabolic gene pathways 167 

whose abundances were associated with both ongoing symptomatic and long-COVID-19 disease (Figure 168 

4B, 5B). The top 15 predictors indicate a striking pro-inflammatory pattern.  169 

 170 

For ongoing symptomatic COVID, there are 5 pathways involved in the biosynthesis of branched amino 171 

acids that are reduced in patients with longer symptoms (Figure 4B, C). These include the superpathway 172 

of L-isoleucine I (MetaCyc PWY-3001), L-isoleucine biosynthesis III (PWY-5103), superpathway of 173 

branched amino acids (BRANCHED-CHAIN-AA-SYN-PWY), L-valine (VALSYN-PWY), and L-174 

isoleucine (ILEUSYN-PWY) biosynthesis pathways(46) (Figure 4C). Branched amino acid have been 175 

shown to act as anti-inflammatory agents (47, 48) with orally administered L-isoleucine and L-leucine 176 

exhibiting anti-inflammatory activities (49). Four out of 15 of the top pathways involve synthesis of 177 

molecules with anti-inflammatory effects and are lower in ongoing symptomatic COVID patients. These 178 

include the top predictor, Polyisoprenoid(50), whose biosynthesis has also been identified as significantly 179 



decreased in inflammatory conditions such as Crohn’s disease (51). Tetrapyrrole (52) and, farnesol (53) 180 

also have anti-inflammatory effects. Conversely, three pathways for biosynthesis of pro-inflammatory 181 

molecules are increased in ongoing symptomatic COVID patients: dTDP-L-rhamnose 182 

(DTDPRHAMSYN-PWY)(54), pyrimidine (PWY-6545) (55) and purine (P164 PWY) (56) 183 

deoxyribonucleotides. Finally, O-antigen building block biosynthesis (OANTIGEN-PWY), an important 184 

step in the lipopolysaccharide (LPS) biosynthetic pathway (57), and the superpathway of phospholipid 185 

biosynthesis (PHOSLIPSYN-PWY), important in LPS production (58, 59), are both higher among patients 186 

with ongoing symptomatic COVID. 187 

 188 

Similar patterns emerge with the long-COVID analysis with 6 predictors shared with those for ongoing 189 

symptomatic COVID analysis. Pro-inflammatory molecule synthesis is higher among long-COVID 190 

patients relative to those without as well as reduced branch-chain amino acid and anti-inflammatory 191 

molecule biosynthesis (Figure 5C). Additional pro-inflammatory molecule biosynthesis are noted with 192 

chorismite (PWY-6163) (60), colanic acid (COLANSYN-PWY) (61), and NAD biosynthesis (PWY-241) 193 

(62) all being higher among the long-COVID patients. 194 

 195 

DISCUSSION 196 

Many patients recovering from SARS-CoV-2 infection have symptoms that last long after the acute 197 

infection has run its course and our study highlights this same phenomenon. Over 1/3 of our cohort had 198 

symptoms lasting longer than 10 weeks and thus enter the long-COVID disease stage. Fatigue and “brain 199 

fog” were the longer lasting, most prominent symptoms among these patients. In an attempt to better 200 

understand both ongoing symptomatic and long-COVID patients, we investigated potential clinical and 201 

microbiome associations with these disorders. Our modeling identified: 1) microbial associations that are 202 

known to promote inflammation via LPS production or other mechanisms, 2) reduction of anti-203 

inflammatory metabolic pathways, 3) pathobionts known to cause pulmonary infections, and 4) 204 

microbiota previously shown to have associations with COVID-19. Thus, our work begins to shed light 205 



on the hypothesis that the oral microbiome composition may influence the duration of COVID-19 disease 206 

symptoms.     207 

 208 

Patients with longer COVID-19 symptoms have dysbiotic, inflammatory-type oral microbiome 209 

The oral microbiome has been shown to closely associate with SARS-CoV-2 co-infections in the lungs 210 

(11) and the oral-lung aspiration axis is a key factor leading to many respiratory infectious processes (63). 211 

We hypothesized that the oral microbiome might associate with the duration of post-acute infection 212 

symptoms presented in ongoing symptomatic and long-COVID disease states (64). Our findings extend 213 

previous work demonstrating how specific member of the genera Prevotella and Veillonella, were 214 

distinctive in the oral microbiota of COVID-19 patients (65). Prevotella species have been 215 

overrepresented in COVID-19 patient populations (42) while both members of the Prevotella and 216 

Veillonella genera have been found in the bronchoalveolar lavage fluid of the COVID-19 patients (31). 217 

Members of the Prevotella genus are thought to produce proteins that can promote SARS-CoV2 infection 218 

and increase clinical severity of COVID-19 (42) and have previously been tied to systemic diseases, 219 

including low-grade systemic inflammation (38). The increased abundances of these two genera on the 220 

tongue have also been associated with an increased risk of death due to pneumonia in older, frail patients 221 

(66, 67). Finally, both genera induce inflammatory responses. Veillonella species have shown a strong 222 

capacity to induce IL-6 (68) while Prevotella strains primarily activate toll-like receptor 2 and enhance 223 

the expression of inflammatory cytokines, including IL-23 and IL-1 (69, 70). Other pro-inflammatory 224 

microbiota were identified in our analysis that also associated with longer disease symptoms such as  L. 225 

wadei (12), S. moorei (71), and multiple Actinomyces species (41). 226 

 227 

Metabolic pathways associated with the production of pro-inflammatory molecules were increased in 228 

abundance while pathways associated with production of anti-inflammatory molecules were decreased in 229 

patients presenting ongoing and long-COVID symptoms. One of the top predictors and thus demonstrating 230 

the strongest association in our data with both ongoing symptomatic and long-COVID disease was 231 



polyisoprenoid biosynthesis. Polyisoprenoid expresses anti-inflammatory activity (50) and is significantly 232 

decreased in inflammatory conditions such as Crohn’s disease (51). Among the top predictors in our 233 

analysis was reduced abundance of genes involved in the production of branched amino acids. Branched 234 

amino acids have long been shown to act as anti-inflammatory agents (47, 48). Evidence is accumulating 235 

to support the hypothesis that systemic chronic inflammation contributes to the symptomatic progression 236 

to long-COVID (22, 72). Given that changes in the microbiome composition can result in chronic 237 

inflammation and metabolic dysfunction (73), it is possible that the pro-inflammatory, microbiome 238 

profiles we observe here could play a pivotal role in this disease process. 239 

 240 

Lipopolysaccharide-producing bacteria may promote inflammation and drive COVID-19 symptom 241 

duration 242 

Lipopolysaccharides (LPS) is an outer-membrane component of gram-negative bacteria and can also be 243 

released in vesicles (74). Vesicle-associated LPS can have proinflammatory effects on host immune 244 

systems (75). Microbiome-derived LPS causes systemic inflammation (76, 77) and can even induce 245 

cognitive impairment and neuroinflammation (78, 79). Increases in lipopolysaccharide-producing 246 

bacteria, such as Leptotrichia, have been demonstrated in the oral cavity of COVID-19 patients and are 247 

thought to be involved in the inflammatory response (12). Our analysis reveals higher abundances of many 248 

LPS-producing bacteria in patients with longer lasting symptoms. For example, Veillonella species, 249 

known to produce large amounts of LPS (37), are present in increased abundances in our COVID-19 250 

patients with longer lasting symptoms. Increases in species such as V. dispar, V. infantium, and V. atypica 251 

are top predictors of ongoing symptomatic COVID while V. infantium is found in higher abundances 252 

among long-COVID patients. Other LPS producing species such as L. wadei (12) and M. micronuciformis 253 

(80) are also found to be in increased abundances. Additionally, our metabolic pathway analysis revealed 254 

an association with important steps in LPS biosynthesis and ongoing symptomatic and long-COVID 255 

disease states. It is possible that LPS production may be a marker of other risk factors rather than a direct 256 



causal contributor. This would be critical to investigate in future work, however this evidence points 257 

towards the important association of inflammation and long symptom disease states.  258 

 259 

Myalgic encephalomyelitis/chronic fatigue syndrome linking to long-term COVID-19 symptoms 260 

through oral microbiome dysbiosis 261 

There has been a growing concern that COVID-19 patients with long-term sequelae resembling patients 262 

with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) (81). These two conditions share 263 

some of the same symptoms, especially fatigue and cognitive impairment (17, 82). ME/CFS is a condition 264 

characterized by chronic fatigue, lasting at least 6 months, that impairs one’s ability to perform daily 265 

activities and typically has additional impairments in memory and concentration (83). This syndrome is 266 

also linked closely to chronic inflammation as the driver of these patients symptoms (84). The link to 267 

long-term symptoms is not unique to COVID-19 disease as patients with both SARS-CoV1 and Middle 268 

East respiratory syndrome have also suffered from long-term sequelae in the previous epidemics (85).  269 

 270 

ME/CFS has been hypothesized to be linked to infectious agents and microbiome dysbiosis has 271 

specifically been described in this syndrome either through the presence of pathobionts or microbial 272 

species that promote chronic inflammation (86). The gut microbiome has been shown to have reduced 273 

diversity and altered composition in ME/CFS patients (87) and viral-induced microbiome changes are also 274 

thought to play a pivotal role (88). Clinical trials targeting the gut microbiome have shown promise in 275 

treating ME/CFS (89). Interestingly, ME/CFS patients have been shown to have altered dysbiotic oral 276 

microbiomes characterized by increased abundances in the genera Leptotrichia, Prevotella, and 277 

Fusobacterium (90). Using whole genome sequencing, we have shown many species belonging to these 278 

genera are increased abundance in both ongoing symptomatic and long-COVID patients. Specifically, top 279 

predicting species L. wadei, P. sp F0091, P. denticola, P. nigrescens, P. histicola, and P. oulorum in the 280 

ongoing symptomatic COVID group and P. denticola, P. melaninogenica, P. jejuni, P. nigrescens and F. 281 

nucleatum in the long-COVID group were all present in higher abundances in patients suffering from 282 



longer lasting symptoms. These finding add intriguing evidence of a possible link between ME/CFS and 283 

COVID-19 patients suffering from longer lasting symptoms related to inflammation in the oral 284 

microbiome.  285 

 286 

Strengths and Limitations 287 

This study has several notable strengths and limitations. This study is limited in the number of patients 288 

enrolled and followed for symptom duration outcomes. A more robust cohort would allow deeper 289 

investigation of preexisting medical conditions and medications which might shape the oral microbiome 290 

composition.  Larger cohorts would also include a more diverse patient set involving those treated as 291 

outpatients and more intensive care unit admissions. Generalization of our findings would need to be 292 

performed in a more diverse patient population. This limitation is balanced by our application of whole 293 

genome sequencing, which provide greater resolution than 16S rRNA gene sequencing used in many of 294 

the previous microbiome investigations (91). We also applied random forest classification which enable 295 

us to include both clinical and microbiome data in our modeling (27, 28). This modeling approach has 296 

significant advantages compared to traditional classification techniques, as it is agnostic to model structure 297 

(e.g. non-parametric regression), it does not need to meet common assumptions underlying classical 298 

regression techniques, and is able to intrinsically perform permutated ranked feature selection (29). We 299 

also have the advantage of collecting samples at the time of diagnosis before medical treatments that may 300 

alter the microbiome composition.  301 

 302 

Conclusions 303 

In conclusion, the oral microbiome of patients with prolonged symptoms falling under the ongoing 304 

symptomatic or long-COVID disease states demonstrates a dysbiotic pattern with increased pathobionts, 305 

increases in inflammation-inducing and LPS-producing microbiota, and reduction of metabolic pathways 306 

known to have anti-inflammatory properties. This work needs further validation however it supports the 307 

tenet that the microbiome may play a role in prolonging symptom duration among COVID-19 through 308 



promotion of inflammation. The microbiome may therefore hold the key to better understanding the post 309 

infection prolonged syndromes now facing patients after they recover from acute infection and provide a 310 

way to predict and subsequently act upon and prevent the development of long-COVID.  311 

 312 

MATERIALS and METHODS 313 

Study Setting and Population 314 

This prospective cohort consists of patients presenting to one Emergency Department located in central 315 

Massachusetts from April 2020 through February 2021. We enrolled patients who presented with 316 

symptoms consistent with a COVID-19 infection but analyzed only those with a positive SARS-CoV-2  317 

PCR whom we could contact for follow-up. We defined symptoms of COVID-19 based off of the Centers 318 

for Disease Control and Prevention guidelines (92). 319 

 320 

Data Collection  321 

We collected baseline factors that included demographics, medical history, and presenting disease 322 

duration and symptomatology. Comorbidity was assessed at baseline using the Charlson Comorbidity 323 

Index (CCI), a widely used instrument designed to measure the burden of medical diseases and predict 324 

mortality (93). Patients were then followed through their hospital course for treatment types and length of 325 

stay. After discharge from the hospital subsequent healthcare visits were recorded through the medical 326 

record. Patients were contacted by phone after 4 weeks of total symptoms after discharge and then again, 327 

a second time, if they were experiencing ongoing symptoms, after 10 weeks. Patients were categorized as 328 

symptoms >4 weeks and symptoms >10 weeks for analysis. Patients were also queried as to the type of 329 

symptoms that lasted the longest. Patients were excluded from follow-up if they died, were unable to 330 

communicate in English, had severe dementia, were in hospice or withdrew themselves from the study. 331 

 332 

Sample Collection and Processing 333 



Oropharyngeal samples were collected using OMNIgene•ORAL collection kits (OMR-120, 334 

DNAgenotek). Briefly, the posterior oropharynx was swabbed for 30 seconds and then the swab was 335 

inserted into a tube with a DNA/RNA stabilization buffer.  Samples were heated to 65-70 oC for one hour 336 

to inactivate SARS-CoV-2 virus (94) and stored frozen. Nucleic acids were extracted by first thawing 337 

samples and then treating with 5ul Proteinase K (P8107S, New England Biolabs) for 2 hours at 50C. DNA 338 

and RNA was then extracted using ZymoBIOMICS DNA/RNA Miniprep Kits (R2002, Zymo Research) 339 

as per manufacture protocol.  340 

 341 

Sequence Processing and Analysis  342 

Metagenomic DNA sequencing libraries were constructed using the Nextera XT DNA Library Prep Kit 343 

(FC-131-1096, Illumina) and sequenced on a NextSeq500 Sequencing System as 2 x 150 nucleotide 344 

paired-end reads. Shotgun metagenomic reads were first trimmed and quality filtered to remove 345 

sequencing adapters and host contamination using Trimmomatic (95) and Bowtie2 (96), respectively, as 346 

part of the KneadData pipeline (https://bitbucket.org/biobakery/kneaddata). As in our previous work (28, 347 

97), metagenomic data was profiled for microbial taxonomic abundances and microbial metabolic 348 

pathways using Metaphlan3 (98)  and HUMAnN3 (45), respectively. The total number of microbial and 349 

contaminant reads recovered as presented in Supplemental Table 1.   350 

 351 

SARS-CoV-2 viral load quantification 352 

PCR was performed using the ViiA 7 Real-Time PCR System (Applied Biosystems) and the GoTaq® 353 

Probe 1-Step RT-qPCR System (Promega, A6120). The primer-probe set N1 (2019-nCoV_N1-F: 5ʹ-GAC 354 

CCC AAA ATC AGC GAA AT-3ʹ; 2019-nCoV_N1-R: 5ʹ-TCT GGT TAC TGC CAG TTG AAT CTG-355 

3ʹ; 2019-nCoV_N1-P: 5ʹ-FAM-ACC CCG CAT TAC GTT TGG ACC-BHQ1-3ʹ) designed by the Centers 356 

for Disease Control and Prevention were obtained from Integrated DNA Technologies (IDT, 10006713) 357 

and used at concentrations of 500 nM and 125 nM, respectively (99). 5 μl of eluted RNA were used to 358 

prepare 20 μl PCR reactions. Cycling conditions were as indicated by the Centers for Disease Control and 359 



Prevention: 45°C for 15 min, 95°C for 2 min, followed by 45 cycles of 95°C for 3 s and 55°C for 30 s (99). 360 

Cycle threshold (Ct) values were converted into viral RNA copies based on a standard curve prepared 361 

from 4-fold serial dilutions of known quantities (1.0 × 106 to 2.44 x 102 viral copies) of a SARS-CoV-362 

2_N positive control plasmid (IDT, 10006625). The lower limit threshold for positive detection in our 363 

study was 244 viral copies per reaction. Viral load was calculated as number of genome copies per 364 

milliliter of transport media to resuspend tongue swabs. The assay was run in triplicate for each sample 365 

and three non-template wells were included as negative controls. 366 

 367 

Statistical and Computational Analysis  368 

To determine similarity in oral microbiome samples among the COVID-19 patients and to associate 369 

microbiome features to duration of symptom outcomes, we started by performing traditional unsupervised 370 

correspondence analysis (Principal Coordinate Analysis and t-Distributed Stochastic Neighbor 371 

Embedding). As most of the signal from the unsupervised analysis was accounted by inter-individual 372 

variability, we then decided to run supervised machine learning models. We built a random forest 373 

classification (RFC) pipeline to predict either ongoing symptomatic COVID or long-COVID from a given 374 

data subset. One sample failed the sequencing run and thus 26 samples were included in our modeling. 375 

The first step of our pipeline used the feature selection algorithm Boruta on five-fold cross-validated data 376 

to estimate model performance (29). The permutated variable importance from each RFC was also 377 

calculated. Each model was run starting from ten different random seeds to calculate performance metrics. 378 

F1 score, the harmonic mean of precision and accuracy, was used to select the top performing model for 379 

each outcome. 380 

 381 

Study Approval 382 

This prospective cohort study was approved by the Institutional Review Board at the University of 383 

Massachusetts Medical School. Written informed consent was received from all study participants prior 384 

to inclusion in the study. 385 
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weeks

10 Patients
 symptoms >= 10

weeks
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Table 1: Demographics, hospital treatments, and symptoms by outcome category 

Patient 

Characteristica 

Early Symptom 

Resolution (n=13) 

Ongoing Symptomatic 

COVID-19 (n=4) 

Long-COVID 

(n=10) 

p-Value 

Demographics and Medical  

Age (mean [SD]) 

(yr) 

62.3 (14.3) 63.8 (13.5) 62.5 (10.9) 0.98 

Male 11 (84.6) 3 (75.0) 5 (50.0) 0.19 

White 9 (69.2) 2 (50.0) 7 (70.0) 0.75 

African American 1 (7.7) 1 (25.0) 0 (0.0) 0.27 

Hispanic 3 (23.1) 2 (25.0) 3 (30.0) 0.93 

Smoker 4 (30.8) 2 (50.0) 3 (30.0) 0.75 

CCI (mean [SD]) 4.1 (3.1) 1.75 (1.5) 3.2 (2.2) 0.31 

Hypertension 9 (69.2) 1 (25.0) 6 (60.0) 0.29 

Diabetes 6 (46.2) 0 (0.0) 2 (20.0) 0.15 

Chronic 

Obstructive Lung 

Disease 

1 (7.7) 1 (25.0) 3 (30.0) 0.37 

BMI (mean [SD]) 30.2 (6.4) 39.3 (5.3) 31.5 (4.8) 0.77 

ICU Admission 2 (15.4) 1 (25.0) 1 (10.0) 0.77 

Remdesivir 5 (38.5) 4 (100.0) 6 (60.0) 0.09 

Clinical Trial 4 (30.8) 1 (25.0) 1 (10.0) 0.49 

Longest Lasting Symptoms 

Fatigue 6 (46.2) 1 (25.0) 8 (80.0) 0.11 

Respiratory 10 (76.9) 3 (75.0) 9 (90.0) 0.68 



GI Symptoms 3 (23.1) 0 (0.0) 1 (10.0) 0.45 

Fever 2 (15.4) 0 (0.0) 0 (0.0) 0.31 

Ageusia / Anosmia 3 (23.1) 0 (0.0) 1 (10.0) 0.45 

Confusion / “Brain 

fog” 

0 (0.0) 1 (25.0) 5 (50.0) 0.017 

Duration of 

Symptoms Days 

(mean [SD]) 

18.8 (11.5) 47.8 (5.4) 80.1 (10.7) <0.001 

aData are presented as the number (%), unless otherwise specified.  

CCI, Charlson Comorbidity Index; BMI, body mass index; ICU, intensive care unit; Advanced O2, if 

patients received oxygen beyond nasal canula (i.e. high flow, continuous positive airway pressure); 

Clinical Trial, if patient received therapy as part of a clinical trial; GI, gastrointestinal. 

c2 test was used to compare categoric variables and analysis of variance for continuous variables 
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 688 

Figure 2: Bacterial abundances predict ongoing symptomatic COVID-19 disease. Random forest 689 

classification modeling to identify predictors of ongoing symptomatic COVID-19 disease using six 690 

different combinations of data modalities. A) F1-scores for the different RFC models trained on different 691 

sets of covariates. Boxplot represents the median and interquartile range. B) Ranking of forest predictors 692 

based on median permutated variable importance for the top performing model. C) Relative abundances 693 

for each bacteria found to be important in predicting ongoing symptomatic COVID-19 disease from the 694 

top performing random forest classification model (vi). Violin plots showing the distribution of relative 695 

abundance for microbes in each patient with symptoms <4 weeks and >= 4 weeks. 0 indicates No, 1 696 

indicate Yes ongoing symptomatic COVID-19 disease. CC, clinical covariates; Abn., abundances; Div., 697 

diversity. 698 
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Figure 3: Bacterial abundances can predict long-COVID-19 disease. Random forest classification 702 

modeling to predict long-COVID-19 disease. A) F1 scores for all subsets of trainable RFC models.  B) 703 

Ranking of top 29 predictors associated with long-COVID based on median permutated variable 704 

importance from the top performing model (iv).  C) Relative abundances for each bacteria identified by 705 

model (iv) as important for predicting long-COVID-19 disease are presented as violin plots. Long-COVID 706 

(orange plots). CC, clinical covariates; Abn., abundances; Div., diversity. 707 
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Figure 4: Bacterial metabolic pathways involving inflammation are significantly associated with 713 

ongoing symptomatic disease. Results from random forest classification modeling using to predict 714 

ongoing symptomatic and long-COVID-19 disease from HUMAnN3 pathway abundances. A) F1 scores 715 

for (i) demographics + clinical covariates + pathway abundances and, (ii) only on pathway abundances. 716 

B) Ranking of forest predictors based on median permutated variable importance from the top performing 717 

model, (ii) pathways only, for each outcome C) Relative pathway abundances for each pathway found to 718 

be important in predicting ongoing symptomatic and long-COVID-19 disease, respectively, by random 719 

forest classification modeling using (ii) only pathway abundances. We report violin plots showing the 720 

distribution of the relative abundance of pathways in patients with symptoms with <4 weeks (blue) and > 721 

4 weeks (yellow) in 4C. 722 
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 725 

Figure 5: Bacterial metabolic pathways involving inflammation are significantly associated with 726 

long-COVID-19 disease. Results from random forest classification modeling using to predict ongoing 727 

symptomatic and long-COVID-19 disease from HUMAnN3 pathway abundances. A) F1 scores for (i) 728 

demographics + clinical covariates + pathway abundances and, (ii) only on pathway abundances. B) 729 

Ranking of forest predictors based on median permutated variable importance from the top performing 730 

model, (ii) pathways only, for each outcome C) Relative pathway abundances for each pathway found to 731 

be important in predicting long-COVID-19 disease, respectively, by random forest classification modeling 732 

using (ii) only pathway abundances. We report violin plots showing the distribution of the relative 733 

abundance of pathways in patients with symptoms with <10 weeks (blue) and >= 10 weeks (yellow) in 734 

5C. 735 
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