Identification and analysis of fungal communities commonly rely on internal transcribed spacer (ITS)-based amplicon sequencing. There is no gold standard to infer and classify fungal constituents since methodologies have been adapted from analyses of bacterial communities. To achieve high resolution inference of fungal constituents, we customized a DADA2-based pipeline using a mix of eleven medically relevant fungi. While DADA2 allowed the discrimination of ITS1 sequences differing by single nucleotides, quality filtering, sequencing bias, and database selection were identified as key variables determining the accuracy of sample inference. Due to species-specific differences in sequencing quality, default filtering settings removed most reads that originated from *Aspergillus* species, *Saccharomyces cerevisiae*, and *Candida glabrata*. By fine-tuning the quality filtering process, we achieved an improved representation of the fungal communities. By adapting a wobble nucleotide in the ITS1 forward primer region, we further increased the yield of *S. cerevisiae* and *C. glabrata* sequences. Finally, we showed that a BLAST-based algorithm based on the UNITE+INSD or the NCBI NT database achieved a higher reliability in species-level taxonomic annotation than the naïve Bayesian classifier implemented in DADA2. These steps optimized a robust fungal ITS1 sequencing pipeline that, in most instances, enabled species level-assignment of community members.
Customization of a *dada2*-based pipeline for fungal Internal Transcribed Spacer 1 (ITS 1) amplicon datasets

Thierry Rolling1,2,3, Bing Zhai1,2, John Frame1, Tobias M. Hohl1,2,4,*,#, Ying Taur1,4,#

1 Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
2 Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
3 Division of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
4 Weill Cornell Medical College, New York, NY, USA

* Corresponding author:
Tobias M Hohl, MD, PhD
Department of Medicine, Infectious Diseases Service
1275 York Avenue, New York, NY, 10044
hohlt@mskcc.org

Joint senior authors

Current affiliation for Bing Zhai: CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

Conflict of Interest Statement:
Tobias M. Hohl has participated in a scientific advisory board for Boehringer-Ingelheim Inc. The remaining authors declare that no conflict of interest exists.
Abstract

Identification and analysis of fungal communities commonly rely on internal transcribed spacer (ITS)-based amplicon sequencing. There is no gold standard to infer and classify fungal constituents since methodologies have been adapted from analyses of bacterial communities. To achieve high resolution inference of fungal constituents, we customized a DADA2-based pipeline using a mix of eleven medically relevant fungi. While DADA2 allowed the discrimination of ITS1 sequences differing by single nucleotides, quality filtering, sequencing bias, and database selection were identified as key variables determining the accuracy of sample inference. Due to species-specific differences in sequencing quality, default filtering settings removed most reads that originated from *Aspergillus* species, *Saccharomyces cerevisiae*, and *Candida glabrata*. By fine-tuning the quality filtering process, we achieved an improved representation of the fungal communities. By adapting a wobble nucleotide in the ITS1 forward primer region, we further increased the yield of *S. saccharomyces* and *C. glabrata* sequences. Finally, we showed that a BLAST-based algorithm based on the UNITE+INSID or the NCBI NT database achieved a higher reliability in species-level taxonomic annotation than the naïve Bayesian classifier implemented in DADA2. These steps optimized a robust fungal ITS1 sequencing pipeline that, in most instances, enabled species level-assignment of community members.
Introduction:

Amplicon-based sequencing methods have allowed researchers to dissect the composition of the bacterial microbiota in a broad range of environmental and biological samples and have widened our knowledge of host-microbe interactions in health and disease (1). More recently, microbiota research has expanded beyond the bacterial kingdom to encompass fungi, archaea, and viruses. The recognized target for fungal taxonomic profiling is the internal transcribed spacer region of the rDNA (ITS) (2). Due to sequencing length limitations, only one of the two subregions ITS1 or ITS2 is commonly used. We have previously shown the potential of an ITS1-based approach to identify the intestinal origin of *Candida* bloodstream infections (3). Here, we demonstrate that customization of this ITS1-based platform can improve the accuracy of fungal species representation.

Currently, most amplicon-based microbiota profiling methods rely on sequencing using an Illumina platform. Starting with the raw Illumina sequences, a pipeline for amplicon analysis includes multiple steps: (optional) demultiplexing, primer removal, quality filtering, denoising or (operational taxonomic unit) OTU picking, and taxonomic annotation. Distinguishing biological variation from sequencing errors is one of the most important features of any amplicon pipeline. Historically, this has been done by grouping sequences that are similar by an arbitrary threshold (commonly 97%) into one OTU. OTU-based methods are still used widely in the recent mycobiota literature (4-6). By design, this approach precludes the discrimination of sequence variants with less than 3% dissimilarity. By increasing the similarity threshold, a higher amount of false (pseudo-) OTUs will be called that are due to sequencing error and not to biological variation. To counter these limitations, algorithms that infer exact sequencing variants by accounting for sequencing quality scores have been developed. Of these, DADA2 is most widely used (7, 8). Alternatives to DADA2 include Deblur (9) as well as UNOISE3, the most recent update of the UNOISE algorithm (10).
The development of these pipelines provides the technical requirements to discriminate sequencing variants in ITS datasets with high resolution. However, individual components of bioinformatic pipelines for microbiome data analysis have been developed for and validated with bacterial 16S rDNA sequences. When applying these tools to fungal ITS datasets, additional complexities (specific to ITS) must be taken to account. First, in contrast to the near uniform length of 16S amplicons across bacterial species, the length of ITS amplicons varies substantially, between 150 and over 500 nucleotides, in different fungal species. The difference in ITS amplicon length leads to a varying degree of overlap between forward and reverse reads (11). While the high variability in ITS sequence and length complicates the bioinformatic processing of fungal amplicon datasets, it also enables a high resolution in differentiating distinct fungal taxa (2). Second, fungal taxonomic annotation is complicated further by a rapidly evolving taxonomy with major reclassifications of medically relevant fungal taxa in the last few years (12). The choice of the database for taxonomic annotation needs to reflect this process. UNITE is a commonly used database for fungal annotation specific to the ITS region (13). Recently, the NCBI has started curating a specific ITS reference sequence database as well (14). Alternatively, non-ITS specific databases such as NCBI NT can be used as a reference for taxonomic classification.

Here, we show that DADA2, the most frequently used ASV-construction tool, effectively discriminated ITS1 amplicons within a mock community of fungal species that were commonly identified in the human intestinal mycobiota. We further optimized the output of a DADA2-based fungal pipeline by customizing the steps from quality filtering to taxonomic annotation and applied it to patient samples.
Results:

Preparation of a mock community ITS1 dataset

To assess the performance of DADA2 in denoising fungal ITS1 amplicons, we prepared a mock fungal community dataset (Fig. 1A). We extracted DNA from pure cultures of *Aspergillus fischeri*, *Aspergillus fumigatus*, *Candida albicans*, *Candida glabrata*, *Candida metapsilosis*, *Malassezia sympodialis*, *Meyerozyma caribbica*, *Meyerozyma guilliermondii*, *Saccharomyces cerevisiae*, and two strains of *Candida parapsilosis* (Supplementary Table 1).

These species and strains were chosen, based on (a) their medical relevance, (b) their difference in ITS amplicon length (Fig. 1B), and (c) the high similarity of ITS1 sequences between some of the species included in the mock community (Fig. 1C). The ITS1 amplicons of the two *C. parapsilosis* strains differed by a single, the amplicons of *A. fischeri* and *A. fumigatus* by two nucleotides, and the amplicons of *M. caribbica* and *M. guilliermondii* by three nucleotides (Fig. 1D). The *S. cerevisiae* strain included in the mock community has an intragenomically heterogeneous ITS1, and the two resulting sequencing variants have two nucleotide differences. All the highlighted differences between highly similar amplicon pairs represented less than one percent of the total ITS1 amplicon length and thus were below the 97% similarity threshold that is commonly chosen for OTU construction.

After DNA extraction, we calculated and normalized the DNA abundance of each input fungal species via quantitative PCR (“balanced”) and created extreme conditions (“extreme 1” and “extreme 2”) for the two species pairs with highly similar ITS1 amplicons (*Meyerozyma* and *Aspergillus*) by diluting one of the species 50-fold. We performed an ITS1 amplicon PCR, followed by sequencing on an Illumina MiSeq platform using PE300 settings.

Denoising with DADA2 allows high-resolution discrimination of fungal ITS1 amplicon datasets

DADA2 discriminated between individual constituents that differ by a single nucleotide in ITS1 amplicons. In contrast, an OTU-approach (i.e. UPARSE in this example) with a commonly used
97% similarity threshold cannot discriminate these amplicon sequences (Fig. 2A). We also confirmed that DADA2 differentiated these species in cases in which one species or strain was highly dominant over another species or strain with a highly similar ITS1 region. DADA2 was able to detect *M. guilliermondii* and *M. caribbica* as well as *A. fumigatus* and *A. fischeri* reads in these extreme conditions. In contrast, an OTU-based approach only resolved the sequence of the amplicon variant with the most reads, since the nucleotide differences in these reads did not pass the 3% dissimilarity threshold to qualify as a distinct OTU (Fig. 2A).

Species-specific bias in ITS1-based amplicon pipelines

To assess the sequencing quality of raw reads, we developed an R script (available on GitHub: https://github.com/thierroll/dada2_custom_fungal) that links raw reads to the final ASV assignment. Intriguingly, the read quality differed markedly depending on the fungal species that gave rise to an amplicon (Fig 2B and Fig S1). Specifically, reads that originated from the two *Aspergillus* species, but also to a lesser extent those that originated from *S. cerevisiae*, *C. glabrata*, and *M. sympodialis* showed a more rapid trail-off of the Phred base quality score towards the 3’ end compared to amplicon sequences that originated from other *Candida* and *Meyerozyma* species. This translated to a high number of expected errors per read (Table 1). These species-specific quality issues did not reflect on the overall quality measures of the sequencing run (Supplementary Table 2).

In the DADA2 workflow, filtering is accomplished by the *filterAndTrim* function and modulated by two filtering variables: *truncQ* (truncation based on quality scores) and *maxEE* (maximum expected error). In the manuscript that introduced the concept of *maxEE* the authors suggested a value of 1, corresponding to no expected error (15). In the DADA2 package, the default value for both *truncQ* and *maxEE* is 2. Individual reads are truncated at the first nucleotide base with a Phred quality score lower than *truncQ*. After truncation, all reads with an equal or higher number of expected errors than the *maxEE* value are removed.
We hypothesized that species-specific differences in the read quality might lead to a bias in the quality filtering step of the DADA2 pipeline. To test this hypothesis, we ran 100 permutations of the two filtering variables used in the filterAndTrim function, \textit{maxEE} and \textit{truncQ} (Fig. 2C).

We confirmed that by using standard filtering values (\textit{maxEE}=2, and \textit{truncQ}=2), most reads pertaining to \textit{Aspergillus} species and, to a lesser extent, reads pertaining to \textit{S. cerevisiae}, \textit{C. glabrata}, and \textit{M. sympodialis} would have been discarded. Increasing \textit{maxEE} and \textit{truncQ} values maintained a higher number of reads that belonged to these species by up to 3-fold.

To adjust for species-specific quality differences, the parameters for merging forward and reverse denoised reads could be an alternative variable to modify target. Therefore, we assessed whether customizing the \textit{mergePairs} function provides enough or additional benefit compared to customizing the filtering variables. Changing the minimal number of overlapping nucleotides did not affect the number of expected reads that we retrieved, changing the maximum number of mismatches in the overlapping region from 0 to 1 only minimally increased the number of expected reads, and increasing it further had no effect (Supplementary Figures 2 and 3).

\textit{Effect of fine-tuned quality filtering variables on ITS1 dataset}

We assessed the impact of customizing the filtering variables on the overall number of retained sequences and on the proportion of expected sequences. The overall number of retained reads increased with higher \textit{maxEE} values and with higher \textit{truncQ} values above a threshold of 6 (Fig 3A). At \textit{truncQ} values below 6, increasing \textit{maxEE} up to 6 increased the proportion of expected reads, while a further increase had a detrimental effect (Fig 3B). Based on these results, we used a value of 8 for both \textit{truncQ} and \textit{maxEE} for further analyses.

With both the customized and default filtering combinations, we retrieved all 12 expected ASVs. The number of non-expected ASVs (noise) decreased from 46 to 22 in the balanced community when the customized filtering values were used. The decrease in non-expected ASVs was
mainly due to ASVs that differed from the expected sequence by 14 nucleotides or less, with the largest reduction seen in sequences that were assigned to *M. sympodialis* (Fig. 3C and Supplementary Table 3). With customized filtering variables in place, the overall proportion of noisy reads remained below 1%.

Effect of filtering customization on real-world data

We assessed the effect of customizing the filtering strategy on high throughput ITS sequencing of patient fecal samples. (Fig 4A). We confirmed that the customization enabled us to substantially increase the relative abundance of reads pertaining to *Aspergillus* species (Samples A-C). By using the standard filtering variables, no *Aspergillus* reads were detected in Sample C. The relative abundance of reads pertaining to *S. cerevisiae* were also increased with customized filtering (Samples D-F), though to a lesser extent than the *Aspergillus* reads. For both species, the increase in the relative abundance correlated with an increase in the total number of reads that were retained by the customized filtering strategy (Fig. 4B). Reads that were discarded by the customized method were evenly discarded across the different steps of the DADA2 pipeline (Supplementary Table 4).

To exclude an effect based on institution-specific protocols, we analyzed the sequencing quality of an external publicly available ITS1 dataset (6) (Fig 4C, and Fig 4D). Importantly, the authors used different ITS1 primers and a different library preparation strategy, resulting in forward reads exclusively in R1 (Illumina first mates), and in reverse reads exclusively in R2 (Illumina second mates). We confirmed taxon-specific quality differences in this dataset, with a faster quality trail-off for *Aspergillus* and *Saccharomyces* reads compared to *Candida* reads. As expected, the reverse reads (R2) had a lower quality than the forward reads (R1) due to the library preparation method chosen in this protocol, in which the R1 and R2 adapters were incorporated in the forward and reverse ITS1 primers, respectively. Customizing the filtering variables in the DADA2 pipeline led to changes in the computed taxonomic constitution of
individual samples. Importantly, due to the longer *Saccharomyces* ITS1 size and the fast
quality-trail off, truncating at a Phred score of 8 led to non-overlapping sequences and a
complete absence of *Saccharomyces* reads. In contrast, modifying only maxEE led to an
absolute and relative increase of *Saccharomyces* reads, and to some extent, *Aspergillus* reads.
These findings emphasize the need to individually customize the DADA2 pipeline to institutional
ITS1 protocols.

Optimizing ITS1 primers for S. cerevisiae and C. glabrata

Returning to the mock community assembled for this study, the number of reads attributed to *C.
glabrata* and *S. cerevisiae* were ~1 log₁₀ lower than the reads of other species (Fig. 2A), even
though we normalized the amount of input rDNA in the “balanced” sample and adapted the
filtering parameters, (16). This result is explained in part by sequencing bias of the Illumina
platform against the longer ITS1 amplicon of these two species (Fig. 1B). Beyond the impact of
amplicon length, we hypothesized that a single nucleotide difference in the primer region of the
forward primer (ITS1-F) between the reference genome of *S. cerevisiae*, some *C. glabrata*
strains, and other fungal taxa could be responsible for a portion of the observed species-specific
bias (Fig 5A). By using an alternative primer with a wobble nucleotide at the diverging position
near the 3’ end, the yield of *C. glabrata* and *S. cerevisiae* reads increased 7.2-fold in the
balanced mock community and 2.0-fold in a community maximally enriched in both species
(90% of input DNA, Fig. 5B).

Taxonomic annotation for fungal ITS1 amplicon datasets

Multiple combinations of annotation algorithms and reference databases have been developed
for taxonomic annotation. To find an optimal combination, we compared three regularly updated
reference databases (UNITE with three different versions, NCBI NT, and NCBI ITS RefSeq Fungi) and two annotation algorithms (RDP and BLAST). DADA2 implements a naïve Bayes
classifier (RDP classifier) in its assignTaxonomy function. The ITS-specific workflow recommends using a UNITE database without specifying which database version to use (https://benjjneb.github.io/dada2/ITS_workflow.html). We tested three different versions of the UNITE database: 1) including singletons as reference sequences (UNITE), 2) including global and 97% singletons (UNITE_s), 3) the full UNITE+INSD database. All three databases resulted in the correct taxonomic annotation at the genus level. With the default bootstrap threshold of 50, (correct) species-level annotation was not achieved in four or five of 12 ASVs, depending on the database used (Fig. 6 and Table S4). For most of these annotations, the uncertainty was acknowledged by not calling a species-level taxonomy. However, sequences for *M. carribica* were incorrectly called as *M. guilliermondii* for UNITE_s and UNITE, and as *M. carnophila* for UNITE+INSD. With the bootstrap threshold set at 80 (suggested for reads longer than 250nts (17)), the proportion of species-level annotation would decrease even further. Species-level identification was inconsistent between the different versions of the UNITE database. We set a predefined seed in advance to ensure that the naïve Bayes classifier algorithm returned reproducible results when rerunning the analyses.

The RDP classifier implemented in the assignTaxonomy function does not allow customization to return more than one hit. In contrast the BLAST-based algorithm, as we implemented it, did not return a single, most likely hit, but rather a list of the top potential hits based on E-value or other scores. We arranged these ties based on an available species-level designation and on the number of times a specific species-level designation was returned. With this strategy, both the full UNITE+INSD and the NCBI NT databases allowed a correct species-level annotation for all query sequences (Fig 6 and Supplementary Tables 6 and 7). In contrast, the BLAST-based algorithm was ineffective in returning a correct species-level annotation with the alternative novel fungal database NCBI ITS_RefSeq_Fungi (Supplementary Table 8).
We tested these combinations of algorithm and database on an external dataset (mockrobiota community 9)(18). For these sequences, our BLAST-based algorithm had a similar performance to an RDP-based algorithm. (Fig 6 and Supplementary Tables 9 - 11).
Discussion:
This study demonstrates that a DADA2-based denoising algorithm distinguishes fungal ITS1 amplicon reads that differ by a single nucleotide, as previously demonstrated for bacterial 16S amplicon datasets (7). This discriminatory power allows for species-level distinctions for the members in our mock community of medically relevant fungi. This discriminatory power is not achievable by an OTU-based approaches due to grouping clusters of sequences with 97% similarity (19). Additionally, independent DADA2 runs yield the same ASV classification, allowing comparisons between different studies.

The high resolution provides the possibility to identify intraspecies variability, if there is a difference in the ITS1 amplicon, as shown in the discrimination of two C. parapsilosis strains with a single nucleotide polymorphism. This fine discriminatory power was harnessed to track individual C. parapsilosis strains across different body sites and time to determine the relationship of intestinal and bloodstream isolates in a pathogenesis study (20). In S. cerevisiae and certain other species, fungal rDNA is present in multiple copies and can contain intragenomic polymorphisms, resulting in the presence of more than one ASV for a given clone (21, 22). The optimized DADA2 pipeline can discriminate these polymorphisms and return distinct ASVs for a single clonal origin. On the other end of the spectrum, it is possible that two fungal species have an identical ITS1 (23). Thus, it is important to note that fungal ITS1-based ASVs are not a substitute to define a specific fungal species. Diversity measures may be overestimated at the fungal ASV level (24). We feel these limitations are clearly outweighed by the benefit of higher taxonomic resolution associated with an ASV-based approach compared to an OTU-based approach with a 97% similarity threshold. If needed, analysis at higher taxonomic levels remains possible.

Due to the decrease in sequencing quality towards the end of Illumina reads, it is generally recommended to trim reads at the 3’ end in processing bacterial 16S data (7). With this trimming step, the overall quality increases and more reads can pass the quality filter implemented in the
pipeline (25). With the variation in ITS amplicon length, this approach is not generally recommended for fungal datasets. Besides the possibility of trimming reads at a fixed length, the `filterAndTrim` function of the DADA2 package incorporates the possibility to trim reads at the first position with a Phred score lower than a prespecified threshold. By default, this threshold is set to 2. In this study, we showed that increasing this threshold to 8 increased the number of reads that passed the second quality filter step and were denoised correctly.

Quality filtering with the `filterAndTrim` function was performed by removing reads with a higher expected error than a specified threshold. Using the number of expected errors within a read has been shown to be a superior filtering strategy to using the overall or average quality of a read (15). In our dataset, we showed that increasing the threshold leads to a better recovery of reads that are expected to be present in the sample. Since DADA2 relies on the distribution of sequencing errors, we speculate that including a higher number of erroneous reads may increase the reliability of the error model.

Intriguingly, changing the filtering and trimming parameters affected specific fungal taxa differentially, a phenomenon that has not been described widely in the literature. The ITS regions of different fungal taxa vary considerably in sequence, length, and GC content (26), but this is not likely to influence sequencing quality. An alternative hypothesis would be that DNA extraction techniques affect the DNA of different fungal taxa in different ways. It is critical to consider the impact on differential read quality in the analysis of ITS datasets to minimize any taxon-specific filtering bias.

It is important to highlight that taxon-specific differences vary with the sequencing strategy and the primers used. We demonstrated that changing the parameters of the DADA2 pipeline leads to markedly different results both in an internal and in an external dataset. We therefore advise researchers to individually customize DADA2 parameters based on institution-specific protocols and mock datasets to ensure a reliable taxonomic fungal representation. To ensure
reproducibility, we encourage researchers to publish the code and relevant pipeline variables together with the results of the analysis.

Besides quality differences of sequences obtained from different species, an additional species-specific bias can be introduced by the commonly used ITS1 forward primer, as it differs by a single nucleotide from the complementary regions for taxa such as *S. cerevisiae* and *C. glabrata*. The impact of this primer modification is measurable, yet moderate in comparison to other biases, such as variations in amplicon length and in rDNA copy numbers between taxa (27). While ITS-based mycobiota analysis will detect different members of fungal communities in high resolution, it can only approximate their relative abundance. However, it remains an extremely valuable tool to classify community members, to assess temporal and spatial variations of the mycobiota, and to monitor exponential expansion of pathogenic fungal taxa seen in specific disease states (3).

Shotgun metagenomics may provide a less biased analysis of microbial communities. However, in most communities, such as the human intestine, the overall abundance of fungi is low. Without the enrichment step inherent to amplicon sequencing, these fungal communities cannot be readily detected in shotgun metagenomic datasets at current sequencing depths. In addition, reference databases for shotgun metagenomic analyses are either absent or incomplete (28). At the present time, ITS-based amplicon approaches remain a cost-efficient standard to profile fungal communities.

Correct genus-level assignment was achievable for ITS1 amplicon datasets either via the RDP naïve Bayesian classifier implemented in DADA2 or via a BLAST-based approach, irrespective of the reference database. However, both approaches had limitations. Slight differences in the version of the database gave rise to inconsistent species-level results using the RDP algorithm.
A BLAST-based approach is limited by the fact that the single best hit is not obligately returned, since the algorithms stops after a certain number of hits (that can be customized) have passed the e-value threshold. The RDP algorithm allows acknowledgment of uncertainty only in cases in which the bootstrap value falls below a certain threshold and species-level annotation is not called.

In all cases, genus-level annotation was highly accurate irrespective of the chosen algorithm. In studies of the human mycobiota, species-level annotation is desirable due to differing phenotypic characteristics of species within a genus, such as *C. albicans* and *C. parapsilosis* (29, 30). Species-level annotation is associated with a higher level of uncertainty than genus-level annotation. To confirm biologically meaningful associations, it is therefore advisable to confirm taxonomic annotations by culture-based methods.

In this study, we achieved improved levels of species-level annotation for our community of medically relevant fungi with the BLAST-based algorithm than with the RDP algorithm, and a similar performance for an external dataset. It is important to state that the RDP classifier has not been designed specifically for species-level annotation (31). In addition to the RDP classifier implemented in the `assignTaxonomy` function, DADA2 includes the function `assignSpecies` which aims to unambiguously assign species by exactly matching sequences to a reference. It has been designed specifically for short-read 16S sequences. Of note, `assignSpecies` allows for multiple exact hits, but it has not been tested on fungal datasets so far. Ultimately, the choice of algorithm and associated variables is up to the individual researcher. However, it is important that researchers document and publish this choice to allow for independent interpretation and comparability.
The NCBI NT and the full UNITE+INSD both performed equally well. The NCBI ITS RefSeq database did not result in correct taxonomic annotation at the species level. Of note, the downloadable UNITE databases are updated once yearly while NCBI databases and the linked NCBI taxonomy are updated continuously (14, 32). In the 2020 iteration of UNITE used for this study, the taxonomy for Candida strains was not yet updated to reflect the family/genus denominations (Debaryomycetaceae as the family for C. albicans, C. parapsilosis, and C. metapsilosis, and Saccharomycetaceae as family and Nakaseomyces as genus for C. glabrata). It is important to use the newest version of either database to reflect the rapidly changing fungal taxonomy or to correct nomenclature manually (12, 14).

In summary, we established that a DADA2 based pipeline can discriminate ITS1 amplicons with single nucleotide resolution as a proof-of-concept using a representative mock community of medically relevant fungi. While ITS-inherent species-specific biases cannot be overcome fully, customization of a the DADA2-based analytic pipeline can lead to more accurate representation of fungal communities.
Methods

Fungal strains and DNA preparation

We selected 11 different fungal strains from 10 distinct species for analysis (Table S11). These strains were chosen to reflect a range of distinct medically relevant fungi and included strains with more than 97% identity in the ITS1 amplicon (A. fumigatus and A. fischeri, M. caribbica and M. guilliermondii, and two C. parapsilosis strains). Fungal strains were revived from glycerol stock and streaked on YPD agar, cultured at 37°C for overnight. Then the strains were inoculated in YPD liquid medium and cultured at 37°C, 240rpm for overnight. Fungal cells were harvested and washed twice with sterile water. Fungal DNA was extracted with the QIAamp DNA mini kit (Qiagen 51306).

Composition of DNA pools

The 18S copy number per μl of DNA for each strain was measured by quantitative PCR (33). DNA of all the strains was pooled at equal amount of 18S copy numbers for the “balanced” community. For the extreme 1 community, equal amounts of DNA were pooled for all strains except for A. fumigatus and M. guilliermondii, which were both diluted 50-fold. For the extreme 2 community equal amounts of DNA were used for all strains except for A. fischeri and M. caribbica, which were both diluted 50-fold. Finally, the enriched community was composed of 10% of the balanced community DNA, 45% of S. cerevisiae DNA, and 45% C. glabrata DNA.

Fecal samples

Fecal samples were drawn from a fecal biorepository of patients undergoing allogeneic hematopoietic cell transplantation at Memorial Sloan Kettering Cancer Center (20, 34). We selected fecal samples from different sequencing runs that contained reads attributed to Aspergillus. Samples were processed as described previously(20).
Amplicon production and sequencing

We amplified the ITS1 region with the primer set ITS-1-F (5'-CTTGGTCATTAGAGGAAGTAA-3') and 5.8S-1R (5'-GTTCAAAGAYTCGATGATTCAC-3'). We also tested an alternative forward primer including a replacement wobble nucleotide (5'-CTTGGTCATTAGAGGAASAA-3'). The DNA was amplified for 35 cycles (98° C, 53° C, and 72° C, for 30 s each) using Phusion polymerase (F530L), as reported previously (20). The ensuing amplicons were sequenced on an Illumina Miseq platform with paired-end 300 setting after library preparation. The amplicon and sequencing strategy result in both forward and reverse reads being present in the R1 and R2 reads. The raw reads were preprocessed by separating forward and reverse reads based on primer presence into two different files. Subsequently primers and (partial) read-ins into the opposite primer were removed by using cutadapt (35).

Denoising and OTU clustering

Denoising was performed using the DADA2 package in R (7). No fixed length trimming was used. To test different filtering strategies 100 iterations of the filterAndTrim function with maxEE and truncQ values varying between 1 and 10 each were performed on the preprocessed reads of the “balanced” community with the ITS-1-F/5.8S-1R primer set. Additionally, we assessed variations on the minOverlap and maxMismatch variables within the mergepairs function. For all other analyses, the ASV object obtained by using maxEE and truncQ of 8 each was used. OTU clustering was performed via UPARSE by using a customized pipeline based on USEARCH and VSEARCH using the suggested value of maxEE of 1(36-38) and a 97% similarity threshold.

To assess the effect of varying filtering variables on an external dataset, we downloaded the ITS 1 sequencing data from a study on age-related variations of the micro- and mycobiota and processed similarly to sequences from our institution (6).
Taxonomic annotation

To test the RDP Naïve Bayes classifier implemented in the `assignTaxonomy` function of DADA2, we downloaded three variants of the UNITE database, version 8.2 (February 2020) (13). DADA2 can utilize two variants of the general FASTA release, one that includes singletons as reference sequences (DOI: 10.15156/BIO/786368) and another that includes global and 97% singletons (DOI: 10.15156/BIO/786368). The third variant consists of the full UNITE and INSD dataset (DOI: 10.15156/BIO/786372). The header of this dataset was reformatted to comply with DADA2 requirements. We used the default bootstrap threshold of 50 implemented in the DADA2 `assignTaxonomy` function and set the seed of R’s random number generator to 100 for all analyses.

To test a BLAST-based approach to taxonomic assignment, the UNITE and INSD dataset was converted to a BLAST-compatible format, NCBI NT and NCBI RefSeq ITS libraries were downloaded in December 2020 from the NCBI FTP site (14, 38, 39). We performed a local BLAST search for the expected sequences with a maximum of 50 target sequences. We calculated the number of times a specific species-level taxonomy was returned per sequence for the NT and the UNITE databases. This was not possible due to the nature of the NCBI ITS database which includes a unique sequence per species. Additionally, for the UNITE database we sorted the results on whether a species-level annotation was available or not.

To assess the performance of the taxonomy annotation algorithms on an external dataset, we downloaded expected sequences of a fungal mock community (Mock-9) from mock community database `mockrobiota` (18). To allow comparability, we trimmed the expected sequences to cover only the region amplified by our primers. As four of the expected sequences did not include the target of our forward or reverse primers, these were removed from the dataset.
Analysis

All analyses were performed using R version 4.0.3 (The R Foundation for Statistical Computing, Vienna, Austria).

Data availability

Sequences specific to this project have been uploaded to SRA. Code related to the manuscript has been deposited on GitHub: https://github.com/thierroll/dada2_custom_fungal

Study approval

Patients provided written informed consent for biospecimen collection. The fecal biospecimen repository was approved by the MSKCC institutional review board.
Author contributions

TR, BZ, TMH, and YT conceived the study. TR and BZ handled sample processing, DNA extraction, and amplicon preparation. TR analyzed the data with assistance by JF and YT. TR wrote the first draft of the manuscript with subsequent contributions by all coauthors. All authors approved the submitted version of the manuscript.
Acknowledgments

This work was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grant RO-5328/2 (T.R.), National Institutes of Health (NIH) grants R01 AI093808 (T.M.H.), R21 AI105617 (T.M.H.), R21 AI156157 (T.M.H.), R01 AI137269 (Y.T.) and NIH P30 CA008748 (Cancer Center Core Grant).
References:

Figure 1. Overview of dataset. (A) Sample and Sequencing workflow. (B) Length variation in the amplified ITS1 region of strains within the mock community. (C) Pairwise Levenshtein distance between the expected ITS1 amplicon sequences included in the mock community. (D) Nucleotide differences between expected highly similar ITS1 amplicon sequences.
Figure 2. Performance of DADA2 on the mock community dataset. (A) Strain resolution of DADA2 (ASV) compared to UPARSE (OTU). The “balanced” community has equal 18S rDNA copy-
number normalized amounts of DNA per strain. The “extreme 1” community include equal 18S rDNA copy-number normalized amounts of DNA per strain, except for *A. fumigatus* and *M. guilliermondii*, which were included at 50-fold dilution. The “extreme 2” community include equal 18S rDNA copy-number normalized amounts of DNA per strain, except for *A. fischeri* and *M. caribbica*, which were included at 50-fold dilution ratio. (B) Representative quality profile of raw reads that were denoised into exact sequence matches to *A. fumigatus* and *C. albicans*. The line represents the median Phred Score at that position, while the shaded area represents the 25th to 75th percentiles. (C) Impact of varying truncQ and maxEE on the number of species-specific reads.
Figure 3. Effect of customizing filtering variables of mock community dataset. (A) Number of reads and (B) ration of expected to non-expected sequences for different combinations of truncQ and maxEE. (C) Comparison of the Levenshtein distance for all non-expected sequences to the nearest expected ASV reference sequences.
Figure 4: Effect of customizing filtering values on patient samples. (A) Taxonomic composition of fecal samples according to the filtering strategy used. The arrow shows the retention of reads from Aspergillus species which were completely discarded by the standard filtering strategy. (B) Number of reads retained by DADA2 according to filtering strategy used. (C) Phred quality scores along the R1 and R2 reads of selected fungal genera, generated from (6). (D) Taxonomic composition of representative samples from (6) according to the filtering strategy used.
Figure 5. Length-specific biases in fungal ITS1 amplicon sequencing and adaptation of forward primers for better recall of *S. cerevisiae* and *C. glabrata*. (A) Single nucleotide difference between the ITS1-F primer and the *S. cerevisiae* reference genome. (B) Impact on the relative abundance of *S. cerevisiae* and *C. glabrata* when using a wobble forward primer allowing for the single nucleotide difference between the ITS1-F primer and the *S. cerevisiae* reference genome.
Figure 6. Percentage of correct species-level annotation for different algorithm / database combinations.
<table>
<thead>
<tr>
<th>Taxon</th>
<th>Median EE</th>
<th>Taxon</th>
<th>Median EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. fumigatus</td>
<td>0.89</td>
<td>A. fumigatus</td>
<td>0.82</td>
</tr>
<tr>
<td>A. fischeri</td>
<td>0.86</td>
<td>A. fischeri</td>
<td>0.87</td>
</tr>
<tr>
<td>C. albicans</td>
<td>0.06</td>
<td>C. albicans</td>
<td>0.07</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>0.37</td>
<td>C. glabrata</td>
<td>0.42</td>
</tr>
<tr>
<td>C. metapsilosis</td>
<td>0.08</td>
<td>C. metapsilosis</td>
<td>0.12</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>0.06</td>
<td>C. parapsilosis</td>
<td>0.11</td>
</tr>
<tr>
<td>M. sympodialis</td>
<td>0.23</td>
<td>M. sympodialis</td>
<td>0.14</td>
</tr>
<tr>
<td>M. caribbica</td>
<td>0.07</td>
<td>M. caribbica</td>
<td>0.08</td>
</tr>
<tr>
<td>M. guilliermondii</td>
<td>0.07</td>
<td>M. guilliermondii</td>
<td>0.08</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>0.15</td>
<td>S. cerevisiae</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Table 1: Expected errors (EE) of species-specific forward and reverse reads