Inflammation resolution circuits are uncoupled in acute sepsis and correlate with clinical severity

Bakr Jundi, …, Joel Voldman, Bruce D. Levy

Graphical abstract

Find the latest version:

https://jci.me/148866/pdf
Inflammation resolution circuits are uncoupled in acute sepsis and correlate with clinical severity

Bakr Jundi¹, Do-Hyun Lee², Hyungkook Jeon², Melody G. Duvall¹, Julie Nijmeh¹, Raja-Elie E. Abdulnour¹, Mayra Pinilla-Vera¹, Rebecca M. Baron¹, Jongyoon Han², Joel Voldman², Bruce D. Levy¹*

¹ Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
² Research Laboratory of Electronics, Massachusetts Institute of Technology, Boston, MA 02139, USA

*Correspondence and requests for reprints should be addressed to Bruce D. Levy, M.D., Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115. Telephone: 617-525-5407. E-mail: blevy@bwh.harvard.edu

Running title: SPM counterregulate leukocyte responses in sepsis.

Conflict of interest: BDL is an inventor on patents (SPMs) assigned to Brigham and Women’s Hospital. The other authors have no conflicts of interest to declare that are relevant to the content of this article.

Supplemental data: This article has an online data supplement, which is accessible from this issue's table of content online.
Abstract

Sepsis is a critical illness characterized by dysregulated inflammatory responses lacking counter-regulation. Specialized pro-resolving mediators are agonists for anti-inflammation and promoting resolution and are protective in preclinical sepsis models. Here, in human sepsis, we mapped resolution circuits for the specialized pro-resolving mediators resolvin D1 and resolvin D2 in peripheral blood neutrophils and monocytes, their regulation of leukocyte activation and function ex vivo, and their relationships to measures of clinical severity. Neutrophils and monocytes were isolated from healthy subjects and sepsis patients by inertial microfluidics and resolvin D1 and resolvin D2 receptor expression determined by flow cytometry. The impact of these resolvins on leukocyte activation was determined by isodielectric separation and leukocyte function by stimulated phagolysosome formation. Leukocyte pro-resolving receptor expression was significantly higher in sepsis. In nanomolar concentrations, resolvin D1 and resolvin D2 partially reversed sepsis-induced changes in leukocyte activation and function. Principal component analyses of leukocyte resolvin receptor expression and responses differentiated sepsis from health and were associated with measures of sepsis severity. These findings indicate that resolvin D1 and resolvin D2 signaling for anti-inflammation and resolution are uncoupled from leukocyte activation in early sepsis and suggest that indicators of diminished resolution signaling correlate with clinical disease severity.

Sources of support: NIH grant U24 HL108712 (B.D.L. & J.V.), P01 GM095467 (B.D.L.), K08-HL130540 (R.E.A.), K12-HD047349 (M.G.D.), and K08-HL145098 (M.G.D).

Word count: 200

Keywords: Leukocytes, Resolvin D1, Resolvin D2, human sepsis, microfluidics, isodielectric separation
Introduction

Sepsis commonly precipitates critical illness, is the leading cause of death from infection (1-4), and is characterized by an overexuberant and systemic immune response that can produce organ failure, shock, and death (4, 5). In sepsis, the uncontrolled inflammation can progress despite well-targeted antibiotics and adequate source control of the infection, suggesting that in many cases the unfettered inflammatory response results from host rather than microbial factors (4, 6-8). Cytokines and lipid mediators are amongst the many pro-inflammatory mediators evoked in sepsis, but not all mediators provoke inflammation (6, 8-11). Resolution of inflammation is an active counter-regulatory process that is orchestrated in part by endogenous specialized pro-resolving mediators (SPM) (10-12). In sepsis and other inflammatory diseases, leukocytes are bombarded by a diverse array of signals – including several that promote inflammation and others that promote resolution – and the leukocytes must interpret these signals to inform their functional responses (10, 12-16). We hypothesize that the state of leukocyte activation and their functional responses to ex vivo challenge reflects the in vivo clinical state in sepsis. If feasible in a clinical setting, these leukocyte measures have the potential to provide clinicians with earlier and more predictive and actionable information for a patient’s clinical course than the current routine critical care measures of total and differential leukocyte counting, surveillance for organ failure, or measures of physiological responses.

In microliter quantities of peripheral blood from sepsis patients, polymorphonuclear neutrophils (PMN) dysfunction is apparent with significant decreases in degranulation, O_2^- production, and phagocytosis; and increased cell activation is reflected in changes in the cells’ electrical properties (4, 7, 17-19). Sepsis can impact SPM production, yet the influence of sepsis on cellular resolution responses remains to be determined. D-series resolvins are a family of SPMs
that display protective roles in pre-clinical sepsis models and are present in plasma from sepsis patients (6, 8, 9, 13, 20, 21). Here, we addressed our hypothesis by determining D-series resolvin receptor expression, the impact of resolvin D1 (RvD1) and resolvin D2 (RvD2) on leukocyte activation and function, and the relationship between these parameters of resolution and measures of sepsis clinical severity.
Results

Expression of SPM receptors DRV1, ALX and DRV2 is increased on PMN subsets in sepsis

Peripheral blood was collected from 8 healthy subjects and 18 patients with sepsis (details in Methods). The characteristics for healthy subjects and confirmed sepsis patients are in Table 1.

To investigate counter-regulatory pro-resolving mechanisms in sepsis, we first determined PMN expression level of the two RvD1 receptors, DRV1 and ALX, and the RvD2 receptor, DRV2. After isolation by inertial microfluidic separation, flow cytometry uncovered mature CD16bright PMN (FSC+SSC+CD45+CD66b+CD16+), immature CD16dim and CD16− PMN in peripheral blood from sepsis patients drawn within 72 hours of presentation (Day 0), whereas only mature CD16bright PMN were detected in healthy blood (Figure 1A; gating strategy in Supplemental Figure 1). DRV1, ALX and DRV2 were all expressed on healthy and sepsis CD16bright PMN, with mean fluorescent intensity (MFI) significantly increased in sepsis patients by ~three-fold for DRV1, five-fold for ALX and four-fold for DRV2 compared to healthy subjects (Figure 1B). While mature and immature PMN expressed DRV1, ALX and DRV2 in sepsis, the MFI for DRV1 and DRV2 on CD16bright PMN was significantly higher than on CD16dim and CD16− PMN (Figure 1C). There was no significant change in DRV1, ALX and DRV2 levels on all PMN subsets on hospital days 3 and 7 (Supplemental Figure 2A).

RvD1 and RvD2 partially reversed the diminished PMN phagolysosome activity in sepsis

In sepsis, PMN functional responses are decreased (4, 7, 17, 22). Given the increased expression of DRV1 and DRV2 (Figure 1B), we determined the impact of exogenous SPM ligands for these receptors on PMN function. Isolated PMN were exposed to RvD1 or RvD2 (100 nM, 15 min) before incubation with pHrodoTM red E. coli bioparticles (15 min) to detect phagolysosome
PMN from sepsis patients (vehicle control) had significantly lower numbers of pHrodo+ CD16bright PMN than cells from healthy subjects (Figure 1, D-E), indicating diminished PMN function in early sepsis. In the presence of exogenous RvD1 or RvD2, PMN from sepsis patients displayed a significant increase in the mean percentage of pHrodo+ CD16bright PMN (Figure 1, D-E). By hospital day 3, the percentage of pHrodo+ CD16bright PMN had increased in septic patients to nearly 100% and no further increase could be evaluated for RvD1 or RvD2 (Supplemental Figure 2C). The partial reversal of PMN functional defects in sepsis by RvD1 or RvD2 relative to vehicle was calculated as a mean relative increase of pHrodo+ CD16bright PMN (SPM sepsis - vehicle sepsis)/(vehicle healthy – vehicle sepsis), and RvD1 and RvD2 gave relative increases of 50.7 ± 9.0% and 56.1 ± 9.4% (mean ± s.e.m.), respectively (Figure 1F). For reference, the mean absolute increase of pHrodo+ CD16bright PMN in sepsis, which was calculated by (SPM sepsis – vehicle sepsis) was 11.3 ± 2.0% with RvD1 and 15.3 ± 2.3% with RvD2 (mean ± s.e.m.) (Supplemental Figure 2D). Concentration dependency was assessed by adding RvD1 and RvD2 at 1, 10, and 100 nM to PMN from sepsis patients. A significant increase in the mean percentage of pHrodo+ CD16bright PMN was present at all RvD1 and RvD2 nanomolar concentrations relative to vehicle (Figure 1G).

Given the differential receptor expression on mature and immature PMN subsets in sepsis, we looked at the phagocytic capacity of those subsets and the cell responses to exogenous RvD1 and RvD2. The mean absolute increase in CD16dim PMN phagocytic capacity following RvD1 and RvD2 exposure were lower than those observed in mature CD16bright PMN (6.2 ± 1.8% and 11.6 ± 3.0% (mean ± s.e.m.), respectively), and were even less in CD16− PMN (Figure 1H, Supplemental Figure 2D). Distinct from mature PMN, significant relative increases with RvD1
and RvD2 could not be determined for CD16dim and CD16- PMN as there were too few immature PMN in healthy samples to make the calculations.

RvD1 and RvD2 limit PMN activation in sepsis and healthy individuals

To determine the impact of SPM on leukocyte activation in sepsis, the isodielectric position (IDP) of freshly isolated PMN was determined after incubation with vehicle (<0.01% v/v EtOH), RvD1 or RvD2 (100 nM) followed by PMA (20 nM, stimulated) or vehicle (non-stimulated) (Figure 2A). PMN from healthy subjects stimulated with PMA significantly lowered the median IDP, at 7 MHz frequency, to $581 \pm 4.10 \, \mu m$ (mean \pm s.e.m., red dashed line) relative to non-stimulated PMN at $690 \pm 5.63 \, \mu m$ (mean \pm s.e.m., black dashed line) (Figure 2, B-C). Of interest, PMN from sepsis patients had similar median IDP with PMA ($436 \pm 17.15 \, \mu m$, mean \pm s.e.m., red dashed line) as non-stimulated PMN ($471 \pm 21.38 \, \mu m$, mean \pm s.e.m., black dashed line) (Figure 2, B-C), indicating that PMN isolated from sepsis patients were activated prior to IDS. Consistently, PMN from sepsis patients had a significantly lower median IDP than PMN from healthy subjects before and after PMA stimulation (Figure 2C).

When PMN from healthy subjects were exposed to the SPMs RvD1 and RvD2 (100 nM, 15 min), non-stimulated cells had a median IDP of $654 \pm 8.36 \, \mu m$ (RvD1) and $661 \pm 8.02 \, \mu m$ (RvD2) (mean \pm s.e.m.) (Supplemental Figure 3, A-B). Pre-incubation of PMN from healthy subjects with RvD1 or RvD2 blunted the change in IDP with PMA relative to vehicle; the median IDP for PMA-stimulated PMN was $615 \pm 6.00 \, \mu m$ (RvD1) and $617 \pm 7.95 \, \mu m$ (RvD2) (mean \pm s.e.m.) (Supplemental Figure 3, A-B). In sepsis patients, preincubation of PMN with RvD1 or RvD2 gave a median IDP at similar levels as PMN from healthy subjects (black dashed line) and prevented significant PMA-initiated shifts in IDP (red dashed line) (Figure 2, B-C).
With marked changes in IDP with SPM compared to vehicle control, the differences between the median IDP of PMN stimulated with PMA or vehicle was calculated as a Δ median IDP (ΔmedIDP = median IDP_{veh} − median IDP_{PMA}). PMN (with vehicle) from healthy subjects had a ΔmedIDP of 109 ± 2.92 μm (mean ± s.e.m.), whereas SPM exposure led to a significant decrease in the ΔmedIDP to 39 ± 4.20 μm (RvD1) and 45.5 ± 2.16 μm (RvD2) (mean ± s.e.m.) (Supplemental Figure 3C). To determine whether these changes were concentration dependent, we assessed the actions of 1, 10, and 100 nM RvD1 or RvD2 on IDS responses. In PMA-stimulated PMN, compared to non-stimulated control, the SPM gave a significant increase in the median IDP at all concentrations (red, Figure 2D). In the absence of PMA, there were significant SPM-mediated decreases in median IDP at all concentrations relative to vehicle (black, Supplemental Figure 3D). A corresponding significant decrease in ΔmedIDP was present at all SPM concentrations relative to vehicle (Supplemental Figure 3E).

Expression of SPM receptors DRV1, ALX and DRV2 is increased on monocyte subsets in sepsis

Classical monocytes (FSC^{+}SSC^{−}CD45^{−}CD66b^{−}CD16^{Low}CD14^{High}) were isolated from peripheral blood using inertial microfluidics (Supplemental Figure 1, Figure 3A), and surface expression of DRV1, ALX and DRV2 receptors was determined for cells from healthy subjects (dark gray) and sepsis patients (crimson) (Figure 3B). Similar to CD16^{bright} PMN (Figure 1), classical monocyte expression of these SPM receptors was significantly increased by ~three-fold in sepsis relative to health (Figure 3B). In addition to classical monocytes, intermediate and non-classical monocytes were present in peripheral blood from sepsis patients (Figure 3A). Of interest, DRV1, ALX and DRV2 expression on intermediate monocytes in sepsis was significantly higher
at presentation (day 0) relative to classical and non-classical monocytes (Figure 3C). No significant changes in SPM receptor expression were observed on the monocyte subsets on hospital days 3 and 7 (Supplemental Figure 4A).

RvD1 and RvD2 increase phagolysosome activity in select monocyte subsets in sepsis

Given the differential expression of SPM receptors on monocyte subsets with sepsis, the impact of exogenous RvD1 and RvD2 (100 nM) on phagolysosome activity was determined (see Methods). Nearly all classical monocytes from sepsis patients and healthy subjects were pHrodo⁺ and without significant differences (Figure 3D, Supplemental Figure 4B). With exogenous RvD1 and RvD2, there were no significant changes in the already high percentage of pHrodo⁺ classical monocytes (Figure 3D, Supplemental Figure 4B). The mean absolute increase in the percentage of pHrodo⁺ classical monocytes (described above) were 4.3 ± 1.3 (RvD1) and 4.4 ± 1.4 (RvD2) (mean ± s.e.m.) (Supplemental Figure 4C). In addition, there were no significant changes in phagocytic capacity of classical monocytes with SPMs between 1 - 100 nM of RvD1 and RvD2 (Supplemental Figure 4D). Significant differences with SPM were observed with intermediate monocytes from patients with sepsis, with the mean absolute increases in intermediate monocyte phagocytic capacity at 10.9 ± 2.5 (RvD1) and 12.6 ± 2.5 (RvD2) (mean ± s.e.m.) (Supplemental Figure 4C). (Note: intermediate and non-classical monocytes were not present in sufficient numbers for analysis in healthy subjects). These increases with intermediate monocytes were higher than those seen with classical monocytes from the same subjects (Supplemental Figure 4C). The mean absolute increases in non-classical monocyte phagocytic capacity were 7.5 ± 1.9 (RvD1) and 5.6 ± 1.8 (RvD2) (mean ± s.e.m.); lower than seen with the intermediate monocytes (Supplemental Figure 4C). The increased phagocytic capacity of intermediate monocytes with SPMs was
concentration-dependent between 1 - 100 nM of RvD1 (circle, crimson) and RvD2 (square, crimson) with significant increases in the mean percentage of pHrodo+ intermediate monocytes at all concentrations relative to vehicle (dashed gray line) (Figure 3E).

Relationships between DRV1, ALX, and DRV2 expression and leukocyte functional responses to SPM in sepsis

DRV1, ALX, and DRV2 expression on leukocytes differentiated patients with sepsis at presentation from healthy subjects as demonstrated by the score plot (Figure 4A) and aggregated standard scores (z-scores) (Figure 4B). In addition, leukocyte activation and function (median IDP, pHrodo+CD16bright PMN, and pHrodo+ classical monocytes) differentiated sepsis from health (Figure 4, C-D). The changes in leukocytes from sepsis patients in their phagocytic responses with exogenous RvD1 and RvD2 returned the score plot and aggregated z-scores towards those of healthy subjects (Figure 4, C-D). Moreover, the aggregated z-scores of PMN ΔmedIDP also distinguished sepsis from health and SPM exposure significantly shifted values of cells from sepsis patients back towards those from healthy subjects (Supplemental Figure 5, A-B).

Relationships between RvD1 signaling circuits and disease severity in sepsis for PMN and intermediate monocytes

Next, individual SPM signaling circuits were examined, first for expression of RvD1 receptors (DRV1 and ALX) and parameters of leukocyte responses to RvD1 to determine if there was a relationship to sepsis clinical severity (Figure 5). Four measures of disease severity were used in these analyses, namely the sequential organ failure assessment (SOFA) score, acute physiologic assessment and chronic health evaluation (APACHE) II score, status of mechanical
ventilation (on/off), and mortality. CD16bright PMN DRV1 expression positively correlated with APACHE II score, and ALX expression positively correlated with SOFA score (Figure, 5B-C). In addition, the relative increase of pHrodo+ CD16bright PMN following incubation with exogenous RvD1 inversely correlated to SOFA and APACHE II scores (Figure 5D). RvD1-enhanced PMN’s responsiveness for phagocytosis of bacterial particles was associated with lower SOFA and APACHE II scores, with not requiring mechanical ventilation and with survival (Figure 5D, Supplemental Figure 6A). Intermediate monocyte DRV1 and ALX expression positively correlated with APACHE II score and ALX also positively correlated with SOFA score (Figure, 5F-G). In sharp contrast to PMN, RvD1-enhanced intermediate monocytes’ responsiveness for phagocytosis of bacterial particles positively correlated to SOFA and APACHE II scores (Figure 5H), and had a trend for increased frequency of mechanical ventilation and death (Supplemental Figure 6B), suggesting a distinct pathogenic role for intermediate monocytes in sepsis. No significant correlations were seen with other disease severity indicators (Supplemental Figure 6, C-G).

Relationships between RvD2 signaling circuits and disease severity in sepsis for PMN and intermediate monocytes

Expression of RvD2 receptor (DRV2) and parameters of leukocyte responses to RvD2 were next determined to examine potential relationships to sepsis clinical severity (Figure 6). CD16bright PMN DRV2 expression positively correlated SOFA and APACHE II scores (Figure 6B). Similar to RvD1 (Figure 5), the relative increases in pHrodo+ CD16bright PMN with RvD2 gave significant inverse correlations to SOFA and APACHE II scores (Figure 6C). Higher responses to RvD2-enhanced phagocytosis of bacterial particles were associated with lower SOFA
and APACHE II scores (Figure 6C) and had trends for not requiring mechanical ventilation and survival (Supplementary Figure 7A). Intermediate monocyte DRV2 expression positively correlated with SOFA and APACHE II scores (Figure 6, D-E). While not reaching statistical significance, similar to RvD1, the trends for RvD2-mediated increases in pHrodo⁺ intermediate monocytes were for a positive correlation with SOFA and APACHE II scores (Figure 6F). No significant correlations were seen with other disease severity indicators (Supplementary Figure 7, B-E).
Discussion

Here, we have identified several changes in leukocyte resolution signaling circuits in early sepsis that, together, would unleash acute inflammation by disrupting counter-regulatory restraint mechanisms. Closed-loop inertial microfluidics was used for label-free isolation of leukocytes from microliter amounts of peripheral blood for immunophenotyping and functional analysis (as in (7)). In sepsis patients, PMN activation and host protective responses, namely phagocytosis of bacterial particles, was impaired. Of interest, leukocyte SPM receptor expression was higher in sepsis than health, and DRV1, ALX and DRV2 expression correlated with several parameters of disease severity. Administration of SPMs ex vivo partially corrected the leukocyte defects in a cell type specific manner that was associated with SPM receptor expression. Endogenous leukocyte activation in sepsis was detectable by IDS, and PMN activation was reversed ex vivo by SPMs in low nanomolar amounts in a concentration dependent manner. In PCA analyses, measures of leukocyte SPM receptor expression, function and activation differentiated sepsis from health, and ex vivo SPM mediated pro-resolving responses evolved the sepsis PMN measures towards those from healthy subjects. It was also notable that SPM-enhanced phagocytosis by PMN and intermediate monocytes was directionally similar yet were in sharp contrast when correlated with measures of sepsis clinical severity. Together, these findings have uncovered marked changes in leukocyte activation and cell type specific resolution signaling in sepsis and provide several new potential cellular and molecular biomarkers for clinical correlation with critical illness and its severity.

Inflammation resolution requires regulation of PMN activation, control of further PMN infiltration into tissues, and promotion of cellular clearance mechanisms such as macrophage mediated phagocytosis of microbes, cellular debris and apoptotic cells (4, 6, 10, 12). RvD1 and
RvD2 are SPMs that interact with specific receptors at high affinity \((K_D\) in low nM\) to transduce their actions \((11-13, 20, 21, 23-25)\). Mature CD16bright PMN expressed RvD1 receptors (DRV1, ALX) and RvD2 receptor (DRV2); all of which were increased with sepsis. Earlier stage CD16dim and CD16− PMN also expressed these SPM receptors, and there was a gradient of DRV1 and DRV2 expression that correlated with PMN maturation, suggesting a role for these SPM receptors in PMN ontogeny. SPMs have been identified in bone marrow \((26)\), and these and other lipid mediators have been postulated to play important regulatory functions in myelopoiesis (reviewed in \((27)\)). Peripheral blood monocytes also expressed elevated levels of these SPM receptors in sepsis. Of particular note was the expansion of the intermediate monocytes in sepsis, as these specialized monocytes provoke inflammation and are linked to sepsis and its clinical severity \((4, 7, 28-30)\). Here, the intermediate monocytes had the highest SPM receptor expression amongst monocytes, supporting the notion that these pro-inflammatory cells are also responsive to environmental pro-resolving cues. Mechanisms that increased leukocyte expression of DRV1 and DRV2 in sepsis were not established here, but may relate to either resolvin availability or select pro-inflammatory mediators (e.g., GM-CSF) \((31, 32)\).

Current profiling of clinical sepsis characteristics is primarily limited to leukocyte total and differential counts by CBC \((1-3, 5, 7, 33-36)\). These measures are devoid of leukocyte activation parameters that might better reflect functional leukocyte responses. Building off the concept that leukocytes are active integrators of hundreds of diverse environmental signals, which together direct functional responses, we employed IDS as a direct and sensitive measure of leukocyte activation. PMN median IDP and \(\Delta_{\text{medIDP}}\) is lower in sepsis than in health and correlates with SOFA score for sepsis clinical severity \((7)\). Here, we confirmed that leukocyte activation during sepsis influenced the PMN median IDP and \(\Delta_{\text{medIDP}}\) – relationships that correlated with sepsis.
clinical severity. In this study, we have uncovered a potent (low nM) action for RvD1 and RvD2 to dampen cell activation in freshly isolated PMN from sepsis patients and to inhibit cell activation by the potent soluble, non-receptor dependent stimulus PMA. To this end, the change in PMN IDP with PMA was significantly blunted with the SPMs leading to a markedly reduced Δ_{medIDP}. These findings with exogenous SPM suggest a relative functional deficiency in SPMs in vivo during sepsis. Of note, RvD1 and RvD2 have been detected in plasma in sepsis, with levels associated with survival (9). Together, these results indicate that microliter sampling of peripheral blood by IDS can uncover the endogenous activation state of leukocytes that is reflective of sepsis clinical severity and suggest that IDS has the potential to serve as a predictive clinical biomarker for critical illness.

Direct relationships for individual SPM signaling circuits and sepsis severity uncovered positive correlations between leukocyte DRV1 and DRV2 expression and measures of sepsis severity. In view of these positive correlations, responses to exogenous SPM were examined and increased ex vivo RvD1- and RvD2-induced PMN phagocytic responses to bacterial challenge. Increased pHrodo labeled particles in phagocytes may be secondary to either increased phagocytosis or increased phagolysosome acidification, so the increases observed with SPMs could have resulted from either or both of these cellular mechanisms. Of note, the SPM evoked increases in neutrophil phagocytic responses were associated with lower severity scores, supporting a protective function for these resolution circuits in sepsis PMN responses that are apparently uncoupled in vivo. In sharp contrast, increased SPM responsiveness for intermediate monocyte phagocytosis of bacterial particles correlated with worse outcomes. These findings underscore the cell type specific responses of PMN and intermediate monocytes to SPMs and highlight the provocative role for intermediate monocytes in the dysregulated immune responses
in sepsis. Recent studies have identified these monocyte subsets (7), which can be even further defined in molecular terms (29), as central to sepsis pathophysiology.

In summary, in this basic experimental study in humans, peripheral blood leukocytes in sepsis were differentiated from health by several measures. In addition to CD16bright PMN and classical monocytes, CD16dim and CD16− PMN as well as intermediate and non-classical monocyte numbers increased in sepsis patients. DRV1, ALX and DRV2 receptor expression was increased in early sepsis, in particular on CD16bright PMN that had defects in phagocytosis of bacterial particles despite evidence for aberrant electrical properties suggestive of cell activation. Ex vivo exposure to low nM concentrations of the SPMs, RvD1 and RvD2 elicited cell responses consistent with intact resolution signaling circuits that conveyed information on the functional distinctions between PMN and intermediate monocytes in their association with parameters of disease severity. Together, these findings are consistent with decreased endogenous SPM bioavailability in sepsis as a unifying mechanism for the dysregulated systemic inflammatory responses and their influence on clinical severity. In addition to uncovering new insights into sepsis immunopathology in humans, these results provide methods for assessment of leukocytes in microliter quantities of peripheral blood, including measures of cell activation, SPM receptor expression and functional responses to SPMs, that may ultimately be helpful in stratifying patients with sepsis and other critical illness in clinical research and care.
Materials and Methods

Sample Collection and Patient Adjudication. After obtaining informed consent from individuals or their surrogates, a volume of 1 mL of peripheral venous blood was obtained from a total of 31 patients with a possible diagnosis of sepsis and 8 healthy volunteers at the Brigham and Women’s Hospital (BWH, MA, USA). The clinical diagnosis was unknown to the investigators when the freshly isolated biospecimens were assayed on the day of collection. As part of the Brigham and Women’s Hospital Registry of Critical Illness, patients were assigned a diagnosis of sepsis for 18 subjects (based on the latest Sepsis-3 guidelines) after the patient’s hospital course was reviewed by an independent panel of 3 critical care physicians. Peripheral blood samples were collected in EDTA-containing vacutainer tubes within 72 h of admission to BWH medical intensive care unit (day 0) or admission to the hospital floor services who had positive blood cultures within 24 h (day 0). In addition, peripheral blood from hospitalized patients were also obtained at days 3 and 7 after admission thereafter, when available. Freshly obtained biospecimens were processed within 1-2 h of collection. Healthy individuals reported no past medical history and took no over-the-counter medications in the 2 weeks prior to enrollment. Table 1 shows subjects’ characteristics.

Human Leukocyte Isolation. Leukocytes were isolated from 50 μL of freshly obtained peripheral blood by using the inertial microfluidic separation for downstream assessment of cellular responses to RvD1 and RvD2 in disease and health. The design, assembly, and processing of the inertial microfluidics separation system (IDS) is described in published work elsewhere (7).

Flow Cytometry. Using the inertial microfluidic separation (IDS), 100,00 leukocytes were isolated from 50 μL of peripheral blood. Leukocytes were incubated with 5 μL of Fc-block (Human
TruStain FcX, Biologe). For DRV1 (GPR32) and DRV2 (GPR18) surface receptor staining, leukocytes were incubated with a primary antibody (1:50) to human proteins (anti-GPR32 or anti-GPR18, abcam) for 20 min at RT. Cells were then washed with 1 mL of PBS (without Ca$^{2+}$ and Mg$^{2+}$). Leukocytes were incubated for 20 min at RT with following antibodies to human proteins after washing, with clones noted in parentheses: anti-CD45 PerCP (HI30), anti-CD66b Pacific blue (G10F5), anti-CD16 APC-Cy7 (3G8), anti-CD14 PE-Cy7 (63D3) (all from BioLegend) and secondary antibody Alexa Fluor 546 goat anti-rabbit IgG (1:200) (from Thermofisher). For ALX (FPR2) surface receptor staining, leukocytes were incubated for 20 min with the following antibodies to human proteins, with clones noted in parentheses: anti-CD45 PerCP (HI30), anti-CD66b Pacific blue (G10F5), anti-CD16 APC-Cy7 (3G8), anti-CD14 PE-Cy7 (63D3) (all from BioLegend), and anti-hFPRL1/FPR2 PE (R&D systems). After staining, cells were lysed and fixed with 2 ml of 1:4 dilution of Lyse/fix Buffer 5X (BD Phosflow) with distilled water for 15 min at RT. The gating strategy for the identification of PMN (FSC$^+$SSC$^+$CD45$^+$CD66b$^+$) and monocyte (FSC$^+$SSC$^-$CD45$^+$CD66b$^-$) subsets is demonstrated in Fig. S1. Data were acquired on a BD LSR Fortessa flow cytometer and were analyzed using Flowjo software version 10.1 (Tree Star).

PMN phagolysosome acidification assay. PMN phagolysosome formation response to RvD1 and RvD2 in disease and health was assessed by using pHrodo™ red *E. coli* bioparticles conjugate. The preparation of pHrodo™ red *E. coli* bioparticles conjugate is described in previous work (7). Using the inertial microfluidic separation, 100,00 leukocytes were isolated from 50 μL of peripheral blood. Leukocytes were first incubated for 5 min at 37°C. Following incubation, cells were exposed to RvD1 (1,10, or 100 nM), RvD2 (1, 10, or 100 nM), or vehicle (<0.01% v/v EtOH)
for 15 min at 37°C. Leukocytes were then incubated for 15 min at 37°C after exposing cells with 25 μL of pHrodo™. Cells were washed with 1 mL of PBS (without Ca²⁺ and Mg²⁺) and resuspended with 50 μL of PBS (without Ca²⁺ and Mg²⁺). A total of 2 μL of anti-human antibodies to human proteins, with clones noted in parentheses: anti-CD45 PerCP (HI30), anti-CD66b Pacific blue (G10F5), anti-CD16 APC-Cy7 (3G8), anti-CD14 PE-Cy7 (63D3) (all from BioLegend) were used to stain leukocytes. After staining, the cells were lysed and fixed with 2 ml of 1:4 dilution of Lyse/fix Buffer 5X (BD Phosflow) with distilled water for 15 min at RT. Data were acquired on a BD LSR Fortessa flow cytometer and were analyzed using Flowjo software version 10.1 (Tree star).

PMN activation assessment in Isodielectric Separation. PMN responses to RvD1 and RvD2 in disease and health were assessed by using the isodielectric separation (IDS). Using the MACSxpress Neutrophil Extraction Kit (Miltenyi Biotec) and a magnet (MACSxpress Separator, Miltenyi Biotec), PMNs were isolated from 100 μL of freshly obtained peripheral blood. PMNs were resuspended with PBS (without Ca²⁺ and Mg²⁺) after centrifugation at 1000 r.p.m. for 5 min RT. PMNs were then exposed to RvD1 (1,10, or 100 nM), RvD2 (1, 10, or 100 nM), or vehicle (<0.01% v/v EtOH) for 15 min at 37°C. Following exposure, PMNs were stimulated with PMA at 20 nM (Cayman Chemical Co. Inc.) or vehicle (<0.01% v/v EtOH for 30 min at 37°C). After incubation, PMNs were resuspended in PBS buffer (without Ca²⁺ and Mg²⁺) after centrifugation at 1000 r.p.m for 5 min at RT and introduced into the IDS chamber for processing. The design, processing, and image analysis of the IDS is described in published work elsewhere (7).
Statistics. Data in this study were shown as mean ± s.e.m, unless otherwise indicated. The assessment of statistical significance between groups were performed by two-tailed student’s t-test or Mann-Whitney U test for data that was not normally distributed unless otherwise indicated. Correlations were tested using Pearson’s correlation coefficient (r). A p-value < 0.05 was considered statistically significant. Statistics were performed using Prism 6.0 for Mac (GraphPad, San Diego, CA). For multivariate statistical analysis, principal component analysis was performed for samples with complete datasets using R software. The mean z-scores were calculated using SPSS.

Study approval. Written informed consent was obtained after the approval by Partners Healthcare Institutional Review Board under protocols 2002P000272, 2018P002489, 2008P000495, and 2017P000367.

Acknowledgements

The authors acknowledge the contributions of G. Zhu, L. A. Cosimi and additional members of the Brigham and Women’s Registry of Critical Illness (including L. Fredenburgh, P. Dieffenbach, S. Ash). The authors also acknowledge all sources of support: NIH grant U24 HL108712 (B.D.L. & J.V.), P01 GM095467 (B.D.L.), K08-HL130540 (R.E.A.), K12-HD047349 (M.G.D.), and K08-HL145098 (M.G.D).
References

Figure 1. Upregulation of SPM receptors DRV1, ALX and DRV2 on PMN in sepsis. PMN were isolated from 50 μL of peripheral blood using the spiral microfluidics system (see methods). (A) Flow cytometry contour plots identifying the various FSC^ SSC^ CD45^ CD66b^ PMN subsets based on CD16 surface expression (CD16^{bright}, CD16^{dim} and CD16^{lo}) in isolated blood from healthy and sepsis subjects. (B) Representative flow cytometry histogram plots (upper panels) and violin graphs (lower panels) of CD16^{bright} PMN (FSC^ SSC^ CD45^ CD66b^ CD16) surface receptor expression of DRV1, ALX and DRV2 in control (fluorescence minus one, light gray), healthy (dark gray), and sepsis (crimson), Health n=4 and Sepsis n=12-13. (C) Mean fluorescence intensity (MFI) of surface receptor expression of DRV1, ALX and DRV2 in all PMN subsets in sepsis and healthy Health n=4 and Sepsis n=12-13. (D) Representative flow cytometry contour plots and (E) Frequency of pHrodo+ CD16^{bright} PMN in sepsis (crimson) and healthy (dark gray) after incubation with exogenous RvD1 (100 nM), RvD2 (100 nM), or vehicle (0.01% v/v EtOH) for 15 min at 37°C, Health n=4 and Sepsis n=11. (F) The relative increase of pHrodo+ CD16^{bright} PMN with exogenous RvD1 (100 nM) and RvD2 (100 nM) in sepsis calculated as (SPM sepsis - vehicle sepsis)/ (vehicle healthy - vehicle sepsis), Sepsis n=11. (G) Concentration-response curve of the frequency of pHrodo+ CD16^{bright} PMN to varying concentrations of RvD1 (circle, crimson), RvD2 (square, crimson), or vehicle (mean value, dashed gray line), Sepsis n=6. (H) Representative flow cytometry contour plots of pHrodo+ CD16^{dim} and CD16^{lo} PMN with exogenous RvD1 (100 nM), RvD2 (100 nM), and vehicle (<0.01% v/v EtOH), n=11. Values are expressed as the mean +/- s.e.m. *P<0.05 for sepsis vs. healthy by unpaired, two-tailed t-test, **P<0.05 for vehicle vs. RvD1 or RvD2 by paired, two-tailed t-test, P<0.05 for CD16^{dim} vs. CD16^{bright} PMN by paired, two-tailed t-test, P<0.05 CD16^{lo} vs. CD16^{bright} PMN by paired, two-tailed t-test. H, Health. S, Sepsis.
Figure 2. RvD1 and RvD2 limit PMN activation by IDS in sepsis and healthy individuals. (A) Experimental workflow for the isolation and assessment of PMN activation using isoelectric separation (IDS) to determine their electrical signature, isoelectric position (IDP). After isolation PMN were first incubated with vehicle (<0.01% v/v EtOH), RvD1 (100 nM), or RvD2 (100 nM) for 15 minutes, then either stimulated by PMA (20 nM, red) or not-stimulated (black) for 30 minutes. Their IDPs were measured at 7 MHz frequency voltage. (B) Histogram plots of IDP distributions representative of healthy subjects (top panel) and sepsis patients (bottom three panels). The dashed lines on the histogram plots are the median IDP and their shift is determined upon stimulation of cells with PMA (red lines). (C) Box and whisker plots (median, 25th and 75th percentiles) of the median IDP in non-stimulated (black) or PMA-stimulated (red) PMN of healthy and sepsis patients. (D) Box and whisker plots (median, 25th and 75th percentiles) of the concentration-response curve of the median IDP of PMA-activated PMN from healthy subjects with exogenous RvD1 and RvD2. †P<0.05 for non-stimulated veh vs. stimulated veh in healthy subjects by paired, two-tailed t-test. *P<0.05 for non-stimulated veh-health vs. non-stimulated veh-sepsis by unpaired, two-tailed t-test. ††P<0.05 for stimulated veh-health vs. stimulated veh-sepsis by unpaired, two-tailed t-test. **P<0.05 for unstimulated RvD1 vs. non-stimulated veh in sepsis by unpaired, two-tailed t-test. †††P<0.05 for stimulated RvD1 and RvD2 vs. non-stimulated vehicle in health or sepsis by paired, two-tailed t-test. ***P<0.05 for concentration-response curve of median IDP of stimulated PMN from healthy donors with exogenous RvD1, RvD2, and vehicle by one-way analysis of variance (ANOVA). n = 5 healthy subjects, n = 4 sepsis.
Figure 3. Upregulation of SPM receptors DRV1, ALX and DRV2 in monocytes in sepsis. Monocytes were isolated from 50 µL of peripheral blood using the closed-loop operation of spiral microfluidics system (see methods). (A) Flow cytometry contour plots identifying the various FSC^SSC^CD45^CD66b^ monocyte subsets based on CD16 and CD14 surface expression (classical, intermediate and non-classical monocytes) in isolated blood from healthy subjects and sepsis patients. Classical monocytes were defined as FSC^SSC^CD45^CD66b^CD16^low^CD14^high^, intermediate monocytes as FSC^SSC^CD45^CD66b^CD16^high^CD14^low^, and non-classical monocytes as FSC^SSC^CD45^CD66b^CD16^low^CD14^high^. (B) Representative flow cytometry histogram plots (upper panel) and violin graphs (lower panel) of classical monocytes (CM) surface receptor expression of DRV1, ALX and DRV2 in control (fluorescence minus one, light gray), health (dark gray), and sepsis (red). Health n=4 and Sepsis n=12-13. (C) Mean fluorescence intensity (MFI) of surface receptor expression of DRV1, ALX and DRV2 among all monocyte subsets; classical monocytes (CM, red), intermediate monocytes (IM, beige) and non-classical monocytes (NCM, blue) in health (n=4) and sepsis (n=12-13). (D) Representative flow cytometry contour plots of pHrodo+ classical (CM, red), intermediate (IM, beige) and non-classical (NCM, blue) monocytes from sepsis patients incubated with vehicle (<0.01% EtOH), RvD1 (100 nM), or RvD2 (100 nM) for 15 min at 37°C, n=10-11. (E) Concentration-response curve of the frequency of pHrodo+ intermediate monocytes varying concentrations of RvD1 (circle, red), RvD2 (square, red), or vehicle (mean value, dashed gray line) of sepsis n=6. Values are expressed as the mean +/- s.e.m. *P<0.05 for sepsis vs. health by unpaired, two-tailed t-test, **P<0.05 for vehicle vs. RvD1 or RvD2 by paired, two-tailed t-test, P<0.05 for IM vs. CM by paired, two-tailed t-test, P<0.05 NCM vs. IM by paired, two-tailed t-test.
Figure 4. Differential expression of DRV1, ALX and DRV2 receptors and functional responses in sepsis are counter regulated by RvD1 and RvD2. Two-dimensional score and loading plots from multivariate principal component analysis (A & C) and mean Z-score (B & D) were performed for levels of expression of DRV1, ALX, and DRV2 on leukocytes and leukocyte activation and function as indicated by median IDP and percentage of pHrodo⁺ CD16⁰⁰⁺ PMN, and pHrodo⁻ classical monocytes (CM). Leukocytes from healthy subjects are indicated in red, those from sepsis patients incubated with vehicle control are in green, addition of RvD1 and RvD2 is indicated in blue and aquamarine, respectively. The mean Z-score was derived from individual variable Z-scores in a given subject (n=4 healthy subjects, n = 10 sepsis patients in panel A & B, and n = 4 sepsis patients in panel C & D). The data presented include only subjects with complete data set of all variables (receptor, function, and activation). Values are expressed as the mean +/- s.e.m. *P<0.05 health vs. sepsis by unpaired, two-tailed t-test. §P<0.05 Kruskal-Wallis test, followed by Dunn’s test for multiple comparisons.
Figure 5. Correlation between leukocyte responses to RvD1 and sepsis clinical severity. (A) Schematic diagram of the chemical structure of RvD1 and its receptors (DRV1 and ALX) on the surface of CD16^{bright} PMN. The correlation between clinical severity indicators (SOFA and APACHE II) (other severity indicators such as status of mechanical ventilation and mortality are included in the supplementary figures) and expression levels of surface receptors DRV1 (n=12) (B) and ALX (n=13) (C), and relative increase of frequency of pHrodo⁺ CD16^{bright} PMN with exogenous RvD1 (n=11) (D), was determined. (E) Schematic diagram of the chemical structure of RvD1 and its receptors (DRV1 and ALX) on the surface of intermediate monocytes. The correlation between clinical severity indicators (SOFA and APACHE II) (other severity indicators such as status of mechanical ventilation and mortality are included in the supplementary figures), and expression levels of surface receptors DRV1 (n=12) (F), and ALX (n=13) (G), and absolute increase of frequency of pHrodo⁺ intermediate monocyte with exogenous RvD1 (n=11) (H), was determined. The Pearson correlation r value and significance are noted, red indicated significance of P<0.05 and regression lines are shown. Cell images are from Biorender.
Figure 6. Correlation between leukocyte responses to RvD2 and sepsis clinical severity. (A) Schematic diagram of the chemical structure of RvD2 and its receptor (DRV2) on the surface of CD16^{high} PMN. The correlation between clinical severity indicators (SOFA and APACHE II) (other severity indicators such as status of mechanical ventilation and mortality are included in the supplementary figures) and expression levels of surface receptor DRV2 (<i>n</i>=13) (B), and relative increase of frequency of pHrodo⁺ CD16^{high} PMN with exogenous RvD2 (<i>n</i>=10) (C) was determined. (D) Schematic diagram of the chemical structure of RvD2 and its receptor (DRV2) expressed on the surface of intermediate monocyte. The correlation between clinical severity indicators (SOFA, APACHE II) (other severity indicators such as status of mechanical ventilation and mortality are included in the supplementary figures), and expression levels of surface receptor DRV2 (<i>n</i>=13) (E), and absolute increase of frequency of pHrodo⁺ Intermediate monocyte with exogenous RvD2 (<i>n</i>=10) (F) was determined. The Pearson correlation <i>r</i> value and significance are noted, red indicated significance of <i>P</i><0.05 and regression lines are shown. Cell images are from Biorender.
Table 1. Subject Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Healthy Subjects (n=8)</th>
<th>Sepsis Patients (n=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (%)</td>
<td>Male: 62.5; Female: 37.5</td>
<td>Male: 83.3; Female: 16.7</td>
</tr>
<tr>
<td>Race, ethnicity (n)</td>
<td>Asian (1)</td>
<td>Asian (2)</td>
</tr>
<tr>
<td></td>
<td>Black (0)</td>
<td>Black (1)</td>
</tr>
<tr>
<td></td>
<td>Hispanic (0)</td>
<td>Hispanic (1)</td>
</tr>
<tr>
<td></td>
<td>White (7)</td>
<td>White (13)</td>
</tr>
<tr>
<td></td>
<td>Unavailable (1)</td>
<td></td>
</tr>
<tr>
<td>Age (mean (range))</td>
<td>33.8 (26-41)</td>
<td>56 (19-83)</td>
</tr>
<tr>
<td>Pneumonia (%)</td>
<td>-</td>
<td>61.1</td>
</tr>
<tr>
<td>ARDS (%)</td>
<td>-</td>
<td>61.1</td>
</tr>
<tr>
<td>Malignancy (%)</td>
<td>-</td>
<td>44.4</td>
</tr>
<tr>
<td>APACHE II (mean (range))</td>
<td>-</td>
<td>23.7 (13-41)</td>
</tr>
<tr>
<td>SOFA score (mean (range))</td>
<td>-</td>
<td>8.6 (2-17)</td>
</tr>
<tr>
<td>Vasopressors (%)</td>
<td>-</td>
<td>55.6</td>
</tr>
<tr>
<td>Mechanical Ventilation (%)</td>
<td>-</td>
<td>72.2</td>
</tr>
<tr>
<td>Mortality (%)</td>
<td>-</td>
<td>33.3</td>
</tr>
</tbody>
</table>