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Introduction
Currently around 500 million individuals worldwide have diabetes, which has a dramatically rising prev-
alence (1). Most diabetes cases are type 2 diabetes, which is a condition determined by a combination 
of  reduced insulin action in the insulin target tissues, i.e., insulin resistance, and an insufficient compen-
sation for this insulin resistance due to an impaired insulin secretion. Epidemiologically obesity is the 
main driver of  insulin resistance (2), but excess body fat mass is neither a prerequisite nor a guarantee for 
insulin resistance. There are individuals who remain metabolically healthy despite being obese (3), while 
others develop insulin resistance despite normal body weight (4). This is because the distribution of  fat 
within the human body crucially determines its metabolic role. Individuals with mostly deep abdominal 
and visceral fat accumulation are more prone to develop insulin resistance compared with individuals 
with mostly subcutaneous fat deposition (5). On the other hand, subcutaneous abdominal and thigh fat 
seem to act as protective triglyceride dumps in the body, which preserve insulin sensitivity by confining 
fat to metabolically inert body regions (6, 7). Specific fat compartments, such as fat depots near arteries, 
seem to play distinctive roles in the pathophysiology of  insulin resistance, insulin secretion, and probably 
also the manifestation of  metabolic complications (8). Some of  these perivascular fat depots, such as 
those near the brachial artery, have been shown to associate with insulin resistance (9). Fat tissue in the 

Obesity is one of the main drivers of type 2 diabetes, but it is not uniformly associated with the 
disease. The location of fat accumulation is critical for metabolic health. Specific patterns of 
body fat distribution, such as visceral fat, are closely related to insulin resistance. There might 
be further, hitherto unknown, features of body fat distribution that could additionally contribute 
to the disease. We used machine learning with dense convolutional neural networks to detect 
diabetes-related variables from 2371 T1-weighted whole-body MRI data sets. MRI was performed in 
participants undergoing metabolic screening with oral glucose tolerance tests. Models were trained 
for sex, age, BMI, insulin sensitivity, HbA1c, and prediabetes or incident diabetes. The results were 
compared with those of conventional models. The area under the receiver operating characteristic 
curve was 87% for the type 2 diabetes discrimination and 68% for prediabetes, both superior to 
conventional models. Mean absolute regression errors were comparable to those of conventional 
models. Heatmaps showed that lower visceral abdominal regions were critical in diabetes 
classification. Subphenotyping revealed a group with high future diabetes and microalbuminuria 
risk. Our results show that diabetes is detectable from whole-body MRI without additional data. 
Our technique of heatmap visualization identifies plausible anatomical regions and highlights the 
leading role of fat accumulation in the lower abdomen in diabetes pathogenesis.
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renal sinus could contribute to nephropathy (10, 11). Furthermore, pancreatic fat deposition associates 
with reduced insulin secretion and may be involved in the decompensation of  insulin secretion and thus 
in the pathogenesis of  diabetes (12–14). However, it is challenging to assess the aggregate effect of  fat 
distribution on diabetes. Simple anthropometric variables of  fat distribution, such as waist and hip cir-
cumference, are not very accurate and provide only limited information on the distribution of  fat over 
the body. A more accurate measurement of  fat distribution can be achieved by whole-body T1-weighted 
MRI (15), which by design contrasts fat and water signals as a distribution of  gray scale voxels over the 
body. It is possible to perform a segmentation of  MR images to quantify specific predetermined regions, 
but this approach is laborious and could be biased by predefined areas of  interest. We therefore investi-
gated if  3-dimensional whole-body MR tomograms could be applied in an unbiased way to determine 
if  the represented individual had diabetes at the time of  the scan. Adequately trained machine-learn-
ing models have recently been very successful in associating high-dimensional data with medical labels 
(16). Although it is notoriously challenging to derive human-readable information on key patterns of  
machine-learning classifiers (17), we also aimed to extract information on the anatomical regions deci-
sive in establishing these associations.

Results
Model training for diabetes and related labels. Sex classification converged to approximately 99% area under 
the receiver operating characteristic curve (AUROC) within the first approximately 25 epochs on the 
training set. All other labels tended to take considerably longer to converge, and individual performances 
varied with different network parameters. While sex classification seemed to be easily feasible for the 
network, the smoothed AUROC scores for the diabetes labels mostly peaked at approximately 85% for 
diabetes and approximately 70% for prediabetes and the extended diabetes label. As for the regression 
tasks, all of  the predictive performances slightly varied. However, with different network parameters they 
generally converged to approximately 5%–15% mean absolute error (MAE) on the normalized training 
labels before starting to overfit. In all models, the lowest MAE has been reached for the estimation of  
BMI. The results of  classifications and regressions achieved by the potentially novel dense convolutional 
neural networks in the optimal model are shown in Table 1.

The AUROC for classification of diabetes was 0.87. Receiver operator characteristics curves with and with-
out stratification for sex are shown in Figure 1. As a comparison for the dense convolutional neural networks, 
conventional models were trained using body fat volumes determined by fat compartment segmentation.

A normalized MAE of  0.17 for age is equivalent to ±10 years average error. Similarly, a normalized 
BMI MAE of  0.07 represents an average error of  ± 2kg/m2, and 0.13 normalized HbA1c MAE equals 
±0.4%. Finally, the insulin sensitivity error of  0.26 corresponds to an average error of  ±10.2 AU, which 
represents the weakest regression performance among the continuous outcome variables.

Sensitivity analyses with different model setups. We also tested the diagnostic precision of  different model 
setups for the labels sex, prediabetes, and diabetes and the diabetes label extended by impaired fasting 
glucose and impaired glucose tolerance (IFG+IGT) (Supplemental Table 2; supplemental material avail-
able online with this article; https://doi.org/10.1172/jci.insight.146999DS1). Part of  these alternative 
models used images cropped to torso only or abdomen only (Supplemental Figure 3). As additional aug-
mentation technique, we tested random zooming on the images. Detection of  sex was not affected by the 
restricted images, but the diabetes and prediabetes labels reached lower AUROC values. Interestingly, 
diabetes detection was only slightly affected when using abdominal images, and these techniques had no 
relevant effect on the detection of  diabetes with IFG+IGT. With model training rerun using only the first 
scan from each participant, we yielded lower AUROC for diabetes, but the prediabetes and the extended 
diabetes labels showed comparable diagnostic precision to the original data set.

Target-specific gradient maps. We computed attention heatmaps to acquire information about the reason-
ing behind predictions and to provide visualizations for further analyses. Comparison plots of  heatmaps for 
50 randomly selected samples for the detection of  diabetes and insulin sensitivity are shown in Figure 2A 
The highlighted areas were assigned to prespecified anatomic regions by 3 clinicians who had expertise in 
the interpretation of  medical imaging. For each of  the 8 traits, the human experts rated 100 images present-
ed in 3 dimensions (see example in Figure 2B). Interrater agreement was 76%.

Mean percentages for the predefined anatomical regions appearing in the heatmaps are shown in Table 
2. The deep lower abdominal (visceral) region was associated with most cases of  diabetes classification 
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(89%). This region also seemed to be important, however, less prominent, for classifying diabetes with 
IFG+IGT cases (84%) and prediabetes cases (69%). For the classification of  sex, the upper thorax region, 
including the breasts, played the major role (73% highlighted). Arms and upper legs were also important 
(67 and 61%, respectively). The upper leg region was also often highlighted in the heatmaps of  the regres-
sion on BMI (64%) and insulin sensitivity (70%).

Clusters based on the embedding layer of  MRI scans. Of  the highly complex MRI scans, the training pro-
cess generated vectors with 128 values per image. These are called embeddings and contain all relevant 
information from the scans. To investigate whether this information contained in whole-body MRI scans 
can be used for the prediction of  metabolic features, we performed sex-stratified data-driven clustering on 
the embeddings. The clusters solely based on data from the embeddings delineated groups with different 
anthropometric and glycemic features (Figure 3, A and B, and Table 3). Furthermore, they also predict-
ed future diabetes (Figure 3C, n = 586 with follow-up data, mean follow-up 4 ± 3.7 years, number of  
events = 48, P < 0.0001) and the development of  microalbuminuria (Figure 3D, n = 550 with follow-up 
data, mean follow-up 4.3 ± 3.6 years, number of  events = 95, P = 0.004). Anthropometric variables were 
different across clusters, but the association of  cluster 4 with increased risk of  diabetes and microalbu-
minuria was still significant after adjustment for sex, age and BMI (P = 0.01 and P = 0.03, respectively). 
In addition, the association of  cluster 4 with these outcomes was not explained by differences in base-
line glycemia (P = 0.02 for future diabetes after adjusting for baseline glycated hemoglobin) or baseline 
urinary albumin-to-creatinine ratio (uACR) (P = 0.04 for future microalbuminuria after adjusting for 
baseline uACR, n = 441, events = 76).

Discussion
Here, we tested if  presence of  diabetes can be identified from specific patterns of  body fat distribution 
assessed by MRI. With a machine-learning approach on more than 2000 whole-body MRI data sets, we 
produced excellent classification results that were superior to those from state-of-the-art statistical model-
ing of  body fat compartment volumes. These results prove that diabetes is detectable with deep learning 
from imaging data. Accordingly, 3-dimensional MRI images harbor patterns for a sufficiently good dis-
crimination of  patients with and without diabetes. Of  note, the images were normalized for body length 
to target a classification based on fat distribution rather than body height.

In an empirical approach to look into the black box of  machine learning, we applied human expert 
rating of  heatmaps representing regions important for classification and regression. The interpretation 
of  these heatmaps suggests that deep lower abdominal fat was most critical for the detection of  diabetes 
by the machine (89% of  diabetes heatmaps contained these areas). Furthermore, we also detected diabe-
tes-related signals in the upper legs (66%), the arms (51%), and the neck region (51%).

Visceral fat, in contrast to subcutaneous fat, has been previously identified as an important predictor 
of  insulin resistance, the failure to respond to lifestyle intervention and the future manifestation of  diabe-
tes (18, 19). Interestingly and somewhat unexpectedly, structures in the lower rather than upper abdomen 
turned out to be the most important topographic areas in our analyses. These results suggest that not all vis-
ceral adipocytes have the same impact on metabolism and point toward a heterogeneity with metabolically 
unfavorable fat enriched in the lower part. Highlights in the neck region could be linked to insulin resistance.  

Table 1. Model performance metrics

Model
Classification (AUROC) Regression (MAE)

Sex Diabetes Prediabetes Diabetes with 
IFG+IGT Age BMI Matsuda-index HbA1c

DCN 0.99 0.87 0.68 0.72 0.17 0.07 0.26 0.13
LR/KN 0.54 0.51 0.63 0.193 0.075 0.143 0.135

RF 0.51 0.59 0.56 0.19 0.07 0.142 0.14
SVM 0.60 0.51 0.42 0.192 0.07 0.141 0.134

Summary of model performance metrics for the final dense convolutional network (DCN) compared, with conventional classifiers (LR, linear regression; KN, 
K-neighbors classifier; RF, random forest; SVM, support vector machine) used as benchmarks. Model performance is shown as area under the receiver operator 
characteristics curve (AUROC) for classification and mean absolute error (MAE) for regression.
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Indeed, interscapular fat had been shown as an important independent marker of  insulin resistance (20). Its 
importance in diabetes pathology is corroborated by our current hypothesis-free approach. The arms and 
upper leg regions are unforeseen hot spots, because they mostly comprise subcutaneous, metabolically inert 
fat depots. For estimation of  BMI, arms and upper legs were the leading anatomic regions and might there-
fore predominantly represent general obesity. Of  note, the upper leg region was also leading in the regres-
sion for insulin sensitivity (featured in 70% of  heatmaps). Insulin resistance is the major body fat–derived 
metabolic factor in the pathogenesis of  diabetes. However, insulin resistance is by itself  not sufficient to 
cause diabetes (21). Diabetes only manifests if  there is an additional disruption of  pancreatic insulin secre-
tion. Accordingly, we see a clear dissociation of  the diabetes- and insulin resistance–related regions in 
our heatmaps. Unexpectedly, the deep lower abdomen differentiated diabetes from solitary insulin resis-
tance. As the pancreas is not located in this area, our results suggest that additional biological signals that 
originate from the lower abdomen and target pancreatic islets could impair insulin release. The pancreas 
probably did not emerge directly in our machine-learning approach, as diabetes-related changes only occur 
in the islets that represent a minute proportion of  the entire organ and can therefore hardly be detected 
by imaging. Another organ with known important contribution to diabetes, the liver, could correspond  

Figure 1. Diagnostic accuracy of the machine-learning classifiers. Receiver operating characteristic curves for the detection of prediabetes (A), sex (B), 
diabetes (C), and diabetes with impaired fasting glucose and impaired glucose tolerance (diabetes+ IFG + IGT, D) by the dense convolutional neural network.
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to highlighted areas in the deep right upper abdomen, appearing in 64% of  diabetes with IFG+IGT classifi-
ers. Accordingly, there was considerably less highlighting in the left upper abdomen, i.e., outside of  the liver 
(13%). We have previously shown that a disruptive organ crosstalk among fat, liver, and pancreatic β cells 
could contribute to a deterioration of  insulin secretion (13). Our findings about diabetes-related features of  
whole-body MRI stress the multiorgan nature of  diabetes pathology.

The cluster analysis of  the embeddings generated by machine learning from MRI scans shows a 
clear discrimination of  4 groups. This is not just a sole clustering of  random image information but has 
biological meaning, as the clusters delineate different demographic and metabolic entities. As one of  
the identified subphenotypes was also associated with future diabetes and microalbuminuria, the most 
important early marker of  diabetic kidney disease, the information content of  the MRI images is also 
highly relevant for prediction of  glycemic deterioration and a diabetes complication.

The results of  sensitivity analyses using images restricted to the abdominal region suggest that future 
investigations could mainly focus on abdominal MR imaging. Using state-of-the art MR imaging tech-
niques, higher resolution and faster acquisition times could be yielded, which might contribute to a better 
understanding of  abdominal anatomy to diabetes pathology.

Our work has some limitations. Although different scanners were used to produce our data, this was a 
single-center study without external replication. Despite splitting our data into training, test, and replication 
sets, how our classifier will perform on data from different centers still needs to be tested. Furthermore, some 
of  the data were repeated measurements in the same person, which we were unable to explicitly address in 
the machine-learning procedure. However, labels were updated concurrently (from oral glucose tolerance 
tests [OGTTs] performed at the time of  each MRI scan), linking the respective metabolic status to anatomic 
patterns, and sensitivity analyses using a subset of  the data without repeated measurements show compara-
ble results for some labels. Capturing the intuition behind machine learning is still challenging, and there is 
no generally accepted method for this. To our knowledge, this is the first work to utilize 3-dimensional MRI 
whole-body scans for the analysis of  diabetes and related features as well as to investigate a combination of  
heatmaps and their assignment to anatomic hot spots by human experts.

In summary, our work provides evidence that machine learning can classify diabetes from whole-body 
MRI. Diabetes, but not insulin sensitivity, was particularly associated with the features of  the deep lower 
abdomen. This points toward considerable heterogeneity in the metabolic role of  fat located in different 
parts of  the visceral adipose tissue that has not been described so far. Further research is warranted on under-
lying molecular pathways that could represent important novel pathomechanisms in diabetes development.

Figure 2. Gradient maps visualizing voxels with large influence on the classification/regression outcome. (A) Gradient maps for diabetes and insulin 
sensitivity, computed for 50, randomly selected, persons with prediabetes. The body scans, as well as the gradient maps, were averaged along the coronal 
projection to generate 2-dimensional representations. (B) An example gradient heatmap for the diabetes label in 3 projections. For assignment of gradient 
maps to body regions by raters, similar 3-dimensional gradient map representations, were used.
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Methods

Study population and MRI
MRI was performed on individuals who participated in metabolic screenings within the framework of  
multiple studies performed at the Department of  Medicine IV, University Hospital Tübingen. In most of  
these studies, participants were generally healthy, without known type 2 diabetes but with an increased risk 
for the disease. This was defined as either family history of  type 2 diabetes, BMI of  greater than 27 kg/m2, 
or known prediabetes. The participants came fasted to the study facility and underwent whole-body MRI 
in the early morning, which was followed by a health examination, assessment of  medical history, and an 
OGTT. OGTT does not only allow assessment of  insulin sensitivity and glucose tolerance, but it is also the 
gold-standard detection of  diabetes. Follow-up data for diabetes incidence and assessment of  complica-
tions such as microalbuminuria was available for a subset of  the subjects.

During the MRI, subjects were lying in a prone position with extended arms, and images were recorded 
from fingers to toes. A T1-weighted fast spin–echo technique with a slice thickness and an interslice gap of  
10 mm was applied, allowing discrimination of  adipose and lean tissue due to inherent different longitudi-
nal relaxation times T1. The patient table was shifted by 10 cm after each measurement (12 seconds each). 
Total acquisition time, including 1 rearrangement, was 20–25 minutes (15).

Data acquisition
Within the whole-body MRI scanning procedure, 90–120 parallel transverse slices were generated  
per participant, depending on body height. We quantified total adipose tissue volume, visceral adipose 
tissue volume, and upper extremities adipose tissue volume from these images for the benchmark models, 
using methods described previously (22). MR voxel arrays were provided in the Digital Imaging and Com-
munications in Medicine file format. The original data set consisted of  2555 whole-body scans of  1080 
participants, as some had been scanned multiple times. The number of  MRI scans involved at different 
steps of  the analysis is shown in Supplemental Figure 1. We used 8 ground truth labels. Four of  these were 
binary labels; 1 was for sex, and the remaining 3 were for different diabetes definitions, including diabetes 
(Dα), prediabetes (Dβ), and a third definition, Dγ, that denoted diabetes cases extended with participants 
having concomitant IFG and IGT. In addition to the 4 binary labels, we used age (years), BMI (kg/m²), 
insulin sensitivity (determined with the Matsuda index; ref. 23), and glycated hemoglobin (HbA1c) (%)  
as target labels for the network. An overview of  the characteristics of  participants and the labels is provid-
ed in Supplemental Table 1. Laboratory measurements were performed as previously described (24). The 
diagnosis of  diabetes was established by one of  the following: fasting glucose >7.0 mmol/l, postchallenge 
glucose ≥11.1 mmol/l or a glycated hemoglobin ≥48 mmol/mol. Microalbuminuria was established by  
a uACR ≥30 mg/g creatinine.

Table 2. Human expert classification of gradient heatmaps generated from the output nodes of the machine-learning classifier 
network

Arms Head Lower legs Upper legs

Lower 
abdominal 

visceral 
region

Mediastinum Neck
Thighs, lower 

abdominal s.c. 
regions

Abdomen, 
upper left 

visceral 
region

Abdomen, 
upper right 

visceral 
region

Breasts, 
upper thorax

1 Sex 67% 28% 51% 61% 42% 10% 12% 45% 5% 17% 73%
2 Age 46% 5% 34% 63% 62% 1% 46% 50% 11% 31% 13%
3 BMI 62% 2% 22% 64% 19% 9% 29% 60% 44% 36% 39%
4 Diabetes 51% 14% 28% 66% 89% 4% 50% 27% 14% 42% 12%

5 Diabetes 
and IFG+IGT 44% 8% 16% 49% 84% 2% 51% 22% 13% 64% 7%

6 Prediabetes 49% 4% 31% 53% 69% 1% 50% 20% 12% 59% 12%
7 HbA1c 64% 24% 36% 40% 62% 4% 42% 30% 5% 38% 23%

8 Insulin 
sensitivity 45% 38% 61% 70% 22% 9% 6% 51% 4% 14% 51%

The values show the mean percentage of an anatomical region appearing in the heatmaps of a given trait.
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Data preprocessing
Shape normalization. As mentioned, MRI scans were acquired by generating image slices along the body’s 
horizontal plane. Unlike the slice dimension, the number of  slices varied according to body height. The 
most frequent number of  slices was 95. All scans with different heights were linearly interpolated along the 
vertical body axis to produce volumes with normalized dimensions of  95 × 150 × 250 voxels. The voxel 
grid resolution of  the 2 horizontal axes (considering a standing person) was considerably higher than the 
resolution along the body height axis, with negligible differences in coronal (z axis) scaling due to the afore-
mentioned interpolation. We did not correct the lower resolution on the axis corresponding to the body 
height with further interpolations. However, we downsampled the standardized voxel grids for computa-
tional efficiency to their final dimension of  85 × 110 × 135 voxels.

Figure 3. Partitioning of MRI images. Data-driven clustering was performed from embedding layers, which are numeric representations of MRI scans 
generated during inference (n = 2048). The MRI-based clusters have different distributions of waist and hip circumference (A) and BMI (B). For the partic-
ipants with follow-up data, these MRI-data based clusters also define different risk profiles not only for new-onset diabetes (n = 586) (C), but also for the 
diabetes complication microalbuminuria (n = 550) (D). Diagrams showing incidence-free survival were compared with log-rank tests.
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Voxel value normalization. Voxels that did not belong to the body (e.g., caused by motion artifacts inher-
ent to MRI) were identified using value distributions and set to 0. We standardized body voxel values to 
have a mean of  0 and a SD of  1 and truncated and subsequently shifted the distribution to strictly positive 
values to keep the distinction from the surrounding air. We transformed all scan samples equally.

Labels
A total of  8 outcome label variables were used as described. Samples with missing labels were excluded, 
continuous variables were normalized to a range between 0 and 1. Outliers were removed using the isolation 

Table 3. Characteristics of clusters generated from embedding layer representation of the MRI scans

Clusters
1 2 3 4 P value

n 366 663 341 678
Male sex (%) 251 (68.6) 280 (42.2) 40 (11.7) 217 (32.0) <0.001
Female sex (%) 115 (31.4) 383 (57.8) 301 (88.3) 461 (68.0)
Age in yrs (mean [SD]) 42.94 (11.90) 55.14 (10.62) 37.72 (10.86) 55.66 (9.95) <0.001
BMI (kg/m²) (mean [SD]) 30.44 (5.56) 27.13 (3.43) 26.23 (4.18) 32.47 (4.82) <0.001
Waist circumference (cm) (mean [SD]) 100.33 (14.79) 91.83 (10.14) 84.36 (10.63) 104.23 (11.08) <0.001
Hip circumference (cm) (mean [SD]) 107.73 (10.98) 103.11 (8.28) 102.33 (10.01) 112.51 (11.13) <0.001
Total adipose tissue MRI (L) (mean [SD]) 35.61 (14.44) 28.62 (8.71) 28.57 (9.50) 41.35 (12.57) <0.001
s.c. adipose tissue MRI (L) (mean [SD]) 11.91 (6.69) 8.96 (3.98) 8.56 (3.93) 14.96 (6.36) <0.001
Visceral adipose tissue MRI (L) (mean [SD]) 4.34 (2.57) 3.43 (1.84) 1.53 (1.25) 5.01 (2.03) <0.001
s.c.-to-visceral adipose ratio (mean [SD]) 3.44 (2.25) 3.25 (1.94) 7.23 (3.62) 3.45 (1.96) <0.001
Visceral adipose % of total (mean [SD]) 0.12 (0.06) 0.12 (0.06) 0.05 (0.04) 0.13 (0.06) <0.001
% Liver fat content (mean [SD]) 6.02 (5.68) 4.40 (4.32) 2.25 (2.80) 9.55 (7.67) <0.001
% Fatty liver disease (mean [SD]) 138 (37.9) 165 (25.4) 26 (7.8) 381 (57.0) <0.001
Systolic blood pressure (mmHg) (mean [SD]) 131.19 (16.20) 129.95 (16.32) 120.52 (13.73) 137.71 (16.60) <0.001
Diastolic blood pressure (mmHg) (mean [SD]) 83.25 (11.87) 81.38 (10.95) 76.73 (10.09) 87.62 (11.28) <0.001
Heart rate (bpm) (mean [SD]) 68.57 (12.57) 67.98 (10.49) 69.80 (10.61) 71.64 (10.24) <0.001
Fasting glucose (mmol/l) (mean [SD]) 5.30 (0.51) 5.43 (0.52) 5.02 (0.40) 5.65 (0.61) <0.001
Postchallenge glucose (mmol/l) (mean [SD]) 6.47 (1.53) 6.95 (1.77) 6.13 (1.46) 7.61 (2.10) <0.001
Glycemic category <0.001
NGT (%) 237 (64.8) 348 (52.5) 272 (79.8) 246 (36.3)
IFG (%) 63 (17.2) 136 (20.5) 29 (8.5) 147 (21.7)
IGT (%) 38 (10.4) 90 (13.6) 37 (10.9) 98 (14.5)
IFG+IGT (%) 25 (6.8) 57 (8.6) 2 (0.6) 108 (15.9)
DIA (%) 3 (0.8) 32 (4.8) 1 (0.3) 79 (11.7)
Glycated hemoglobin (mmol/mol) (mean [SD]) 36.36 (3.59) 38.52 (4.00) 35.29 (3.49) 39.86 (4.27) <0.001
Triglycerides (mmol/l) (mean [SD]) 1.36 (0.80) 1.30 (0.73) 1.03 (0.56) 1.70 (1.51) <0.001
Insulin sensitivity (Matsuda, arbitrary units) 
(mean [SD]) 14.80 (10.17) 15.63 (8.75) 19.50 (9.29) 8.91 (5.07) <0.001

Fasting insulin (pmol/l) (mean [SD]) 64.55 (41.69) 51.20 (32.15) 46.90 (26.86) 86.24 (47.78) <0.001
Insulinogenic index (arbitrary units) (mean [SD]) 145.93 (137.84) 96.31 (83.69) 139.64 (184.45) 130.14 (99.14) <0.001
Disposition index (arbitrary units) (mean [SD]) 1781.41 (3409.53) 1287.56 (1252.09) 2834.08 (6596.89) 990.99 (852.42) <0.001
C-reactive protein (mg/dl) (mean [SD]) 0.20 (0.30) 0.18 (0.27) 0.23 (0.35) 0.41 (0.50) <0.001
Cholesterol (mmol/l) (mean [SD]) 4.96 (0.94) 5.22 (0.93) 4.58 (0.86) 5.28 (1.01) <0.001
LDL (mmol/l) (mean [SD]) 3.07 (0.85) 3.18 (0.78) 2.66 (0.79) 3.21 (0.85) <0.001
HDL (mmol/l) (mean [SD]) 1.27 (0.33) 1.43 (0.34) 1.48 (0.32) 1.34 (0.32) <0.001
Aspartate aminotransferase (U/l) (mean [SD]) 26.85 (20.34) 23.68 (8.16) 20.76 (8.40) 25.17 (9.88) <0.001
Alanine aminotransferase (U/l) (mean [SD]) 32.69 (18.81) 24.31 (11.90) 19.91 (12.18) 30.38 (17.05) <0.001
γ-Glutamyl transferase (U/l) (mean [SD]) 30.63 (21.11) 25.55 (24.48) 15.94 (15.55) 34.30 (29.85) <0.001
Serum creatinine (mg/dl) (mean [SD]) 0.85 (0.16) 0.83 (0.16) 0.78 (0.15) 0.78 (0.16) <0.001
Urine albumin-creatinine ratio (mean [SD]) 24.48 (107.36) 18.50 (46.32) 21.20 (37.48) 20.69 (37.70) 0.558

Anthropometric, clinical, and laboratory characteristics of clusters generated from embedding layer representation of the MRI scans. DIA, diabetes; NGT, 
normal glucose tolerance; IFG, impaired fasting glucose; IGT, impaired glucose tolerance.
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forest algorithm and fitted on a subset of  the medical features, namely insulin sensitivity, BMI, HbA1c, as well 
as total adipose tissue estimate (25).

Data partitioning
In order to assess the generalization capabilities of  our models, we applied a stratified random split to sepa-
rate the entire data set into training (70%), validation (15%), and test (15% of all data) folds. The folds were 
stratified by BMI, insulin sensitivity, and diabetes. Our stratification algorithm required that each multivariate 
stratum contains more than 1 sample (Supplemental Figure 1).

Augmentation
To increase model robustness, the input volumes were augmented in several ways. Additional 0 padding was 
added to each dimension, increasing the size of the 3-dimensional image array. To augment the training sam-
ples, the degree of padding was dynamically adjusted at random during training. Furthermore, a series of  
rotations were randomly performed on each input array as well as addition of Gaussian noise to all body voxels 
(Supplemental Figure 2). For testing and validation, the body volumes were centered, and no rotation or noise 
was applied. We also performed sensitivity analyses using additional random zooming of the images during 
the training. Furthermore, we tested the training on restricted images cropped to the torso and abdominal area 
(Supplemental Figure 3, A and B).

Model architecture
Densely connected convolutional layers. We built the network in accordance to the DenseNet architecture (26). 
The 3-dimensional input volumes were fed to the input layer in batches consisting of  8 samples each. The ini-
tial layer consisted of  a fully connected convolutional layer with a kernel size of  5 and 8 convolutional filters. 
The initial convolutional layer was followed by a batch normalization layer (27, 28). The dimensions of  the 
intermediary feature maps were subsequently downsampled using a pooling layer to improve computation 
efficiency. The output was fed to the first dense block. Alternating dense blocks and transition layers were 
sequentially added to process the input.

Following the final transition layer, the activation maps were flattened to a 1-dimensional array and passed 
to 3 sequential densely connected layers with dropout. The output of the dense layers had the dimension 1 × 
128 units and was referred to as the embedding layer, embodying low-dimensional representations of MRI vox-
els as “learned” by the neural network. The embedding layer was used for the prediction of the desired target 
labels and for unsupervised clustering analysis. For the prediction of the output nodes, subsequent dense layers 
were added to the embedding layer. A schematic of the entire model is provided in Supplemental Figure 2.

Gradient heatmaps. Predictions for the various target variables were directly represented by the output 
nodes. Differentiating these with respect to previous convolutional layers yields pixel-wise gradients. The 
chosen approach for heatmap generation was gradients × input (27); hence, we computed the gradients of  
the individual outputs with respect to the image input. Differentiating resulted in target-specific gradients of  
the same dimension as the input scans. Gradient heat maps were assigned to anatomical regions by 3 human 
medical experts (experienced physicians working in hospitals) who had experience in the evaluation and 
interpretation of  medical imaging. All expert raters were blinded to the subject characteristics as well as to the 
trait they rated. Results were averaged for the 3 raters.

Hyperparameters. We used a growth factor kGrowth = 18. The initial convolution layer, prior to the first 
dense block had a kernel size of 5 × 5 × 5 voxels, and it generated 4 activation maps. We chose to evaluate the 
model with 3 dense blocks and 3 subsequent fully connected layers, downsampling the flattened representation 
to 512, 256, and 128, respectively. With the sole exception of the final regression output layers, all activation 
functions throughout the network were exponential linear units (28). We chose the initialization proposed by 
He et al. (29) for all kernel weights. Adam (30) was used as optimizer with an initial learning rate of 10-4. All 
other hyperparameters of the optimizer were kept at their Tensorflow (31) implementation defaults. The learn-
ing rate is adapted during training through a Tensorflow variable and has a cyclic, exponentially decay.

Training. Network training was performed on a Nvidia Tesla V100-PCIE 32GB GPU, using the CUDA 
framework (32). The network was trained for a maximum of 250 epochs with a batch size of  8, due to  
the considerable memory requirements of  our 3-dimensional voxel grids. The network converged after 
approximately 2–3 days, depending on network depth, i.e., number of  trainable parameters as well as batch 
size and other hyperparameters.
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Model selection. We frequently evaluated the network’s performance and selected the model according to 
the highest diabetes (Dα) AUROC score on the validation set.

We first summarized the training progress, using the AUROC and MAE metric on the validation set over all 
trained epochs (Figure 4). Metrics were generally computed on the test set with the exception of diabetes (Dα) 
and prediabetes (Dβ). Due to the critically low number of positives for these labels, we chose to concatenate the 
data sets for testing and validation to compute the classification performance metrics. To assess the performance 
of our approach, benchmark models were computed using linear regression and k-nearest neighbor classifier, 
random forest models, and support vector machines for comparison. Body fat compartment volumes that have 
been segmented from MR images (total, visceral, and upper limb adipose tissue) were used as model inputs.

Postprocessing. The output of  the model consisted of  a set of  predictions for each sample in addition to the 
respective gradient maps as well as its embedding space representation.

We used gradient maps to compute target specific heat maps, using the gradients×input method, proposed 
by Shrikumar et al. (27). The individual output nodes were differentiated with respect to the input to produce 
3-dimensional feature-specific gradient maps. For visualization, the gradient maps were postprocessed using 
Gaussian filters in addition to contrast enhancements and averaging to 2 dimensions. Furthermore, for the 
classification nodes, only the output node corresponding to the correct label was considered. In other words, 
for a patient with label female, only the gradient that increased the female probability prediction was used for 
visualization. All positive gradients were considered for the regression tasks.

Data availability
All requests for data and materials are promptly reviewed by the Data Access Steering Committee of  the 
Institute of  Diabetes and Metabolic Research, Tübingen, Germany, to verify if  the request is subject to any 
intellectual property or confidentiality obligations. Individual level data may be subject to confidentiality. Any 
data and materials that can be shared will be released via a material transfer agreement.

Statistics
Cluster analysis was performed on the embeddings using partitioning around medoids with Gower’s distanc-
es. The optimal number of  clusters was selected using average Silhouette widths. To investigate the robust-
ness of  the clusters, we performed a bootstrap validation showing a Jaccard similarity index of  0.73 over all 
clusters. A subset of  the participants was tested during follow-up visits for incident diabetes (n = 586) and 
microalbuminuria (n = 550). Comparison of  risks was performed using Kaplan-Meier diagrams and log-rank 
tests. Further analyses with adjustments for potential confounders were performed with proportional hazards 
models. Proportional hazards assumptions were tested by visualizing Schoenfeld residuals.

Figure 4. Training metrics and model selection. Performance of models in subsequent computation runs for classifications (area under the receiver oper-
ating characteristic (ROC) curves (A) and regressions (normalized mean absolute error) (B). The circled point in A indicates the highest achieved ROC for 
diabetes in the validation set.
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