Developmental Vascular Malformations in EPAS1-Gain-of-Function Syndrome

Jared S. Rosenblum MD1, Herui Wang PhD1, Pauline M Dmitriev MD1, Anthony J Cappadona BS1, Panagiotis Mastorakos MD PhD2,3, Chen Xu MD PhD1, Abhishek Jha MD4, Nancy Edwards BA2, Danielle R. Donahue BS5, Jeeya Munasinghe PhD5, Matthew A. Nazari MD6, Russell H. Knutsen BA7, Bruce R. Rosenblum MD8, James G Smirniotopulos MD9,10, Alberto Pappo MD11, Robert F. Spetzler MD12, Alexander Vortmeyer MD13, Mark R Gilbert MD1, Dorian B. McGavern PhD3, Emily Chew MD14, Beth A. Kozel MD PhD2, John D. Heiss MD2, Zhengping Zhuang MD PhD1*, Karel Pacak MD PhD DSc4*

1Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States; 2Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States; 3Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States; 4Section on Medical Neuroendocrinology, Eunice Kennedy Shriver NICHD/DIR, National Institutes of Health, Bethesda, MD, 20892, United States; 5Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892; 6Internal Medicine and Pediatrics, Georgetown Hospital, Washington DC, 20007, United States; 7Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; 8Department of Neurosurgery, Riverview Medical Center, Red Bank, NJ, 07701; 9Radiology, George Washington University, Washington DC 20052; 10MedPix® National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894; 11Oncology Department, Developmental Biology and Solid Tumor Program, St. Jude Children’s Research Hospital; 12Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; 13Clinical Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana; 14Division of Epidemiology and Clinical Applications, NEI, NIH, Bethesda, Maryland.

Brief Summary

We discovered vascular malformations due to failure of developmental vascular regression in patients with EPAS1-gain-of-function mutation syndrome and the corresponding transgenic mouse model.

To whom correspondence should be addressed:

Zhengping Zhuang, MD, PhD
Building 35, Room 2B203
35 Convent Drive
National Cancer Institute, NIH
Phone: 240-760-7055
zhengping.zhuang@nih.gov
AND

Karel Pacak, PhD, MD, DSc
Building 10, Room 10-CRC-1-3140
Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH
Phone: 301-402-4594
karel@mail.nih.gov

The authors have declared that no conflict of interest exists.
Abstract

EPAS1, encoding HIF-2α, mutations were previously identified in a syndrome of multiple paragangliomas, somatostatinoma, and polycythemia. HIF-2α, when dimerized with HIF-1β, acts as an angiogenic transcription factor. Patients referred to our institution for new, recurrent, and/or metastatic paraganglioma or pheochromocytoma were confirmed for EPAS1-gain-of-function mutation; imaging was evaluated for vascular malformations. We evaluated the Epas1A529V transgenic syndrome mouse model, corresponding to the mutation initially detected in the patients (EPAS1A530V), for vascular malformations via intravital two photon microscopy of meningeal vessels, terminal vascular perfusion with Microfil silicate polymer and subsequent intact ex vivo 14T MRI and Micro-CT, and histologic sectioning and staining of the brain and identified pathologies. Further, we evaluated retina from corresponding developmental timepoints (P7, P14, and P21) and the adult dura via immunofluorescent labeling of vessels and confocal imaging. We identified a spectrum of vascular malformations in all 9 syndromic patients and in all of our tested mutant mice. Patient vessels had higher variant allele frequency than adjacent normal tissue. Veins of the murine retina and intracranial dura failed to regress normally at the expected developmental timepoints. These findings add vascular malformation as a new clinical feature of EPAS1-gain-of-function syndrome.

Sources of Funding

This study was supported, in part, by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Heart Lung and Blood Institute, National Institute of Neurologic Disorders and Stroke, and National Cancer Institute, NIH, and the Paradifference foundation.
INTRODUCTION

We previously identified the syndrome of multiple paragangliomas, somatostatinoma, and polycythemia resulting from post-zygotic EPAS1-gain-of-function mutations (1). Mutations of the oxygen degradation domain (ODD) of hypoxia-inducible factor-2α (HIF-2α), encoded by EPAS1, have been shown to impair hydroxylation by prolyl hydroxylase domain-containing protein 2 (PHD2) and subsequent association with the von Hippel-Lindau (VHL) protein (1-4). Degradation of HIF-2α is impaired, resulting in its stabilization, prolonged activation, and lack of response to normal or increasing oxygen tension (5,6).

Prior studies have indicated that HIF-2α-mediated signaling modulates angiogenesis and vasculogenesis that develops the arterial and venous systems (7). HIF-2α is activated by tightly regulated regions of hypoxia during vascular development and is highly expressed by endothelial cells (8). HIF-2α signaling has previously been studied by either deletion of HIF-2α or inactivation of PHD2, which is thought to provide gain-of-function of HIF-2α (9-11). However, the HIF-α subunits can still associate with VHL and be degraded by the proteasome without modification by PHD2, though at a slower rate (12,13). Thus, this syndrome, in which the ODD of HIF-2α is mutated, is unique in that it is a true gain-of-function. This allows direct study of the effects of HIF-2α-mediated signaling in vascular development.

Herein, we sought to investigate the effect of gain-of-function of HIF-2α on vascular development in EPAS1-gain-of-function syndrome patients and the corresponding transgenic Epas1 mouse model.
RESULTS

Patient Clinical Characteristics

Representative imaging results are provided for three index patients; patient characteristics for all 9 patients are provided in Table 1 and Supplemental Table 1 and additional patient imaging is provided in Supplemental Figures 1-9. Patients were neurologically intact at presentation except for some with documented poor visual acuity from early childhood, such as previously reported in patient 2 (14).

Patient 3 complained of chronic central scotoma in the left eye.

Congenital Malformations of the Eye in the Syndromic Patients

Ophthalmologic evaluation of 8 patients found optic disc elevation without optic cup in 7 patients (Supplemental Figures 1-5, 7, 8), indicating pseudo-papilledema due to congenital vascular malformation (15, 16). All patients evaluated by fundoscopy had large retinal veins with abnormal branching patterns. Patient 1 demonstrated hemangiomatous lesions arising from post-capillary venules in the peripheral retinal fields bilaterally as previously reported (Supplemental Figure 1); patient 9 had an endophytic juxtapapillary retinal capillary hemangioma (Supplemental Figure 9) (14). Patient 2 had morning glory anomaly of the right eye, persistent fibrovascular hyaloid membrane, and thick choroid with large veins throughout as previously reported (Supplemental Figure 2) (14). Patient 3 showed evidence of partial morning glory anomaly first detected at 18 months old (Supplemental Figure 3). Patients 1-5 and 7-9 had varying degrees of fibrovascular membranes originating from the optic disc (Supplemental Figures 1-5, 7-9). Patients 2, 3, 7, and 8 demonstrated abnormalities of the macula with patient 8 having retinal hemorrhage from a central retinal venous malformation. These are often associated with ipsilateral brain vascular malformations (17).

Systemic Venous Malformations in the Syndromic Patients
MRI of the brain with contrast demonstrated subarachnoid cavernous malformations and prominent interstitial or perivascular spaces throughout the brain in patients 1 (Figure 1A-B) and 4 (Supplemental Figure 4). Patients 8 and 9 had tentorial-based venous malformations with prominent perivascular spaces (Supplemental Figures 8-9). Five patients displayed venous malformations within the quadrigeminal cistern draining to the confluens of the vein of Galen (Supplemental Figures 2, 4, 5, 6, 9) with some involving the pineal gland and tectum. The dural sinuses and confluens of the vein of Galen were prominent in 8 of 9 patients. Time-of-flight magnetic resonance angiography (MRA) of the brain in patient 3 revealed dysplastic segments of the internal carotid artery, indicative of rete mirabile (Figure 1C). Subsequent evaluation of the head and neck vessels with contrasted CT demonstrated rete mirabile of the right internal carotid artery and jugular vein in this patient (Figures 1D; four additional patients (1, 5, 7, and 9) also have rete mirabile involving the jugular vein (Supplemental Figures 1, 5, 7, 9).

Imaging of the neck also revealed a subfascial cavernous malformation in the posterior aspect of the neck in 7 of 9 patients (Figure 2 and Supplemental Figures 1, 3-5, 7-9). This malformation is continuous with the cervical epidural veins, the posterior condylar emissary veins, and large anomalous segmental or intervertebral veins (Figure 2A-B). In 5 patients, the posterior condylar emissary vein is anomalous and disrupts the occipital bone as it drains to prominent cranio-cervical plexuses (Supplemental Figures 1-3, 5, and 9). This was previously reported in patients 1-3 and 5 (18).

The anomalous segmental veins are connected to anomalous large deep cervical veins as seen in volumetric reconstruction (Figure 2B). Patients 2-4 and 7-9 have cervical venous sinuses (Supplemental Figures 2-4, 7-9) draining anomalous cranio-cervical plexuses into the segmental veins. In 4 patients, these segmental veins drained to prominent anomalous vertebral veins (Supplemental Figures 3, 4, 7, 9).
and 9), which subsequently drained to the subclavian vein. Further, in 3 patients, a venous malformation arising from the subclavian vein is observed (Figure 2D; Supplemental Figures 5 and 9).

MRI of the neck in patient 1 showed prominent contrast enhancement posterior to the vertebral bodies in the cervical spine (Figures 3A). Volumetric reconstruction demonstrated a venous malformation arising from the anterior spinal vein with an anomalous connection to the tentorial veins (Figure 3B). The leptomeningeal veins of the malformation were also continuous with both the veins surrounding the nerve root and the intrinsic medullary veins of the spinal cord (Figure 3C). Three patients also demonstrated plexiform anomalous tentorial venous drainage (Figure 3D; Supplemental Figures 7, 8); for some patients, the MRI slices were too thick to visualize tentorial drainage. Patient 9 had an enlarged central canal of the cervical spinal cord (Supplemental Figure 9), which has been stable over the duration of follow-up.

Volumetric reconstruction of CT of the chest, abdomen, and pelvis with contrast performed for tumor staging and restaging were also evaluated for systemic vascular malformations. The cervical venous malformation in patient 1 was found to be continuous with an anomalous external spinal venous system extending to a dysraphic sacrum (Supplemental Figure 10). Seven patients had similar sacral dysraphism or abnormal segmentation as previously reported (17). Further, in patient 1, an aberrant vein was seen in the thoracolumbar region draining the malformation to the inferior vena cava (Supplemental Figure 10). Patient 3 had prominent lumbar epidural veins draining to plexiform segmental veins, continuing to the inferior vena cava and iliac veins through anomalous lumbar veins (Supplemental Figures 3A-C). Patient 9 had anomalous drainage of the epidural veins in the thoracolumbar spine to the inferior vena cava (Supplemental Figure 9).

Vessel Allele Frequency is Greater than in Normal Tissue
Variant (P531S) allele frequency quantified in vessels and adjacent normal tissue from tumor specimens of two patients by manual microdissection from paraffin-embedded sections and ddPCR demonstrated that the variant allele frequency in the vessel is higher than in adjacent normal tissue. The allele frequency in the tumor vessels for patient 2 was 9.27% while the adjacent normal tissue was 2.4%; the tumor tissue was 62%. In patient 9, the allele frequency in the tumor vessels was 48% while the adjacent normal tissue was 5%; the tumor tissue was 81%.

Systemic Venous Malformations in the Syndrome Mouse Model

The syndromic mouse model showed vascular anomalies and malformations similar to those in the patients, including large dural sinuses (n=3/5) (Figure 4A), large veins of Galen and veins throughout the parenchyma (n=5/5) (Figure 4B), and malformations arising from these veins (n=3/5) (Figure 4C) seen on micro-CT, MRI, gross dissection, and histology. Further, gross dissection in one specimen revealed a cavernous angioma off of a branch of the inferior vena cava (Figure 4D).

Intravital two-photon microscopy of leptomeningeal and parenchymal vessels through a thinned skull window in the transgenic mouse model following retro-orbital intravenous injection of tomato lectin DyLight 488 and Evans blue demonstrated increased density and tortuosity of pial arterioles and venules as well as parenchymal capillaries in the mutant compared to the littermate control (Figure 5A).

Histology confirmed these findings and demonstrated post-capillary subarachnoid malformations consistent with cavernous malformations arising directly from large leptomeningeal veins (Figure 5B and Supplemental Figure 10). Staining of the superficial plexus of the retina during the corresponding developmental time points revealed a persistence of a plexiform embryonic venous network in the syndrome model compared to the control; this persists in the adult dura (Figure 5C); additional sample imaging and quantification can be found in Supplemental Figure 12 and eData 1 in the Supplement.
DISCUSSION

We identified a spectrum of vascular malformations arising from multifocal irregular vascular development in the EPAS1-gain-of-function syndrome patients as well as the transgenic mouse model. These included retinal capillary hemangiomas, ocular venous malformations resulting in congenital malformation of the optic disc, intracranial venous and cavernous malformations, and malformations of the extrinsic and intrinsic spinal venous systems resulting in dysraphism. We characterized the novel subfascial malformations on the posterior aspect of the cervical spine arising directly from these anomalous veins as cavernous malformations based on two characteristics. First, these lesions are not intra-parenchymal and therefore do not fit the criteria of hemangioma (19,20). Second, these lesions do not contrast enhance in the same phase as the arteries and veins, consistent with the angiographically occult nature of cavernous malformations (21,22).

These 9 patients range in age from 16-63 years-old at present and have been followed at our institution for up to 11 years (patient 1). None of the patients have developed non-ocular neurologic signs due to these malformations; patient 7 had a clinically silent frontal lobe venous infarct and patient 8 had retinal hemorrhages due to the central retinal venous malformation surrounding the macula. While all patients with morning glory anomaly or significant optic disc malformation had poor visual acuity, this remained stable throughout their follow-up. The venous and cavernous malformations in syndromic patients appeared similar to sporadic malformations, but hemorrhage in syndromic patients was restricted to the cases described above, and myelopathy did not occur, suggesting that syndromic malformations are less prone to hemorrhage than sporadic ones (22,23).

The pattern of anomalous veins throughout the spine appears consistent with remnant inter-somitic or segmental veins, which would normally regress during development as arterial branches from the dorsal
aorta develop (24). Early in development, a hypoxic gradient is established in the ventral-dorsal axis based on the implantation of the embryo (8,25). The ventral aspect of the embryo is better oxygenated than the dorsal aspect (25). A sinusoidal and plexiform network of veins are the first vessels to organize within dorsal mesenchyme once the removal capacity of metabolic waste by passive diffusion is exceeded (26). These anterior, middle, and posterior plexuses are drained by lateral head veins which will develop into the major dural sinuses and jugular veins (27).

A common developmental mechanism leading to vascular malformations in the syndrome would be failure of normal venous regression that occurs in development due to increasing oxygen tension. This mechanism is supported by the co-occurrence of: 1) the spinal venous malformations in persistent dorsal mesenchyme connecting to remnant lateral and segmental veins and draining to the inferior vena cava, 2) large superior sagittal sinus and vein of Galen confluens, which develop from the common central head vein, and 3) rete mirabile—a plexiform webbing of the internal jugular vein around dysplastic carotid arteries. Further, the large intracranial dural sinuses, anomalous posterior condylar emissary veins, and sub-facial cavernous malformations drain laterally to large anomalous deep cervical veins. This is reminiscent of the embryonic drainage of the mesenchymal plexuses to lateral head veins, suggesting an arrested developmental configuration (27).

The transgenic mouse model for EPAS1-gain-of-function syndrome demonstrated that this mutation is sufficient to cause similar anomalies and malformations to those observed in the patients. Further, the model supported the above hypothesis by demonstrating the same vascular malformations and by showing failure of venous regression in the eye and dura, which have a shared venous development (28).
While these patients are known to have varying levels of mosaicism as previously reported, we observed similar anomalies in all patients (29). We believe that the gain-of-function mutation in EPAS1 more significantly affects endothelial cells where it is highly expressed in development (8). In fact, our measurement of allele frequency in tumor vessels confirmed a higher degree of mosaicism in vessels compared to non-tumor adjacent normal tissue. Further, the persistence of remnant dorsal mesenchyme along the spine and prominent leptomeninges, which are of mixed mesenchymal and neural crest origin,29 surrounding the anomalous intracranial veins suggests a failure of neural crest epithelial-to-mesenchymal transition (18,31). This may explain the non-parenchymal locations of some of the malformations.

These newly observed phenotypes together with those previously reported, including paraganglioma, polycythemia, and duodenal ampullary somatostatinoma,12 suggests that the initial somatic mutation arises early in development in a precursor cell lineage that is capable of giving rise to angioblasts, mesenchymal cells, and neural crest. The variant allele frequency measured in the patient samples, which demonstrates that surrounding normal tissue has a much lower variant allele frequency than tumor vessels, suggests, however, that there may be a cell or tissue specific process that selects for or against proliferation of cells with the EPAS1-gain-of-function mutation. Further, the locations of these pathologies in the syndrome and the role of EPAS1 in developmental epithelial-to-mesenchymal transition suggests a failure of migration of the affected cells into their proper locations.

Traditionally, cerebral cavernous malformations, which are often found with associated developmental venous anomalies, are intra-parenchymal lesions (22, 32). They may occur in an autosomal dominant inherited or somatic fashion due to mutation in the CCM1-3 genes (33,34). Subarachnoid cavernous malformations, which we identified in several patients, have rarely been reported (35). Our findings
support a common developmental mechanism for cavernous malformations and developmental venous malformations. Further, this study suggests that the relationship between the spectrum of developmental vascular malformations and neural crest tumors found in these patients is mediated by HIF-2α.

This study (1) adds another clinical feature to EPAS1-gain-of-function syndrome, and (2) adds to the understanding of the role of HIF-2α in vascular development. We demonstrate that somatic gain-of-function mutation in EPAS1 in early development prevents normal venous system regression and pruning, resulting in excessive venous elements. Constitutive activation of HIF-2α prevents the normal reduction in HIF-2α activity that occurs after vascular development increases tissue oxygen levels to normal (36). Additionally, this mechanism may apply to the development of sporadic cavernous and venous malformations that to date remain unexplained.
METHODS

Patient Selection and Evaluation

Patients met the criteria of the syndrome including paraganglioma, polycythemia, and confirmed EPAS1 somatic mutation (Supplemental Table 1) (17,28). Following the recent findings of posterior fossa and spine malformations in patients 1-8 and anomalies of the choroid and retina in patients 1, 2, and 4, 8 of 9 patients underwent ophthalmologic exam, which included fundoscopy and optical coherence tomography imaging, and all patients underwent further neurologic imaging evaluation (13,17). Additional anatomic imaging for tumor staging and restaging included magnetic resonance imaging (MRI) and/or computed tomography (CT) of head and neck and CT of the chest, abdomen, and pelvis. We evaluated available imaging for vascular malformations.

Laboratory Studies

Patient EPAS1 Mutation Analysis

The mutations of the ODD of HIF-2α were confirmed in the genomic DNA extracted from either multiple tumor tissues and/or leukocytes in each patient (Supplemental Table 1) by either Sanger sequencing or peptide nucleic acid sequencing as previously described (1,28). While Sanger sequencing was initially used to detect the mutations in the tumor tissue, it was unable to detect the mutation in circulating leukocytes; these mutations were later detected in these patients by either peptide nucleic acid sequencing or digital droplet polymerase chain reaction (ddPCR), which we used herein to determine variant allele frequency.

Transgenic Knock-in Mouse Model

Epas1^A529V mutant mice were established as previously described via transcription activator-like effector nucleases (TALEN)-mediated homologous recombination (36). A point mutation, A529V
(GCA→GTA), corresponding to the mutation detected in the index patient, was introduced in exon 12 of *Epas1* in one allele distal to an inserted reverse-oriented neomycin resistance gene cassette flanked by loxP sites in intron 11, which in its native state is expected to inhibit transcription of the altered *Epas1* allele (1,28). This heterozygous mouse (*Epas1*^{+/-Neo,A529V}) does not demonstrate polycythemia or noradrenergic phenotype (36). Crossing it with a transgenic mouse of Cre recombinase under the control of the adenovirus Enzyme IIa cyclization recombinase promoter (EIIa-Cre), which is expressed in most tissues but not all cells in the early postzygotic embryo, leads to sporadic excision of the loxP flanking neomycin resistance gene cassette in all tissues (37). This yields four potential categories of mice from each litter: 1) *Epas1*^{+/-Neo,A529V}; EIIa-Cre, henceforth referred to as mutant, 2) *Epas1*^{+/+}; EIIa-Cre, referred to as the Cre-only control, 3) the *Epas1*^{+/+Neo,A529V}, referred to as heterozygous mouse, and 4) *Epas1*^{+/+}, referred to as wild type control (variant negative, Cre negative) (17). This strategy results in the *EPAS1*-gain-of-function mosaic mutant mouse used in our study (*Epas1*^{+/+Neo,A529V}; EIIa-Cre) (36,37). Wild type or Cre-only mice were used as controls for all experiments. Previous quantification of this allele using ddPCR in reverse transcribed cDNA in multiple tissues showed Cre-mediated excision occurred in a high percentage of cells in all tissue types tested (36).

Experiments were performed on 3-5-month-old mice for all experiments except intravital two-photon microscopy, for which 8-month-old mice were used (1 mutant, 1 Cre-only control), and retinal development analysis via immunofluorescent staining and confocal imaging, for which post-natal day 7, 14, and 21 mice were used (2 mutant, 2 Cre-only control for each timepoint). Five mutant mice (four males, one female) and four control (two males, two females) underwent Microfil vascular perfusion and subsequent *ex-vivo* 14T MRI, micro-CT scans and volumetric reconstruction, and gross dissection.

Intravital Two-Photon Microscopy of Pial and Parenchymal Vessels
The surgical procedure for intravital two-photon microscopy was performed per protocol and based on adapted techniques previously developed (38). Three mice—one 8-month-old mutant and littermate control and two 15-month-old mutant and littermate control pairs, all female—were anesthetized using ketamine, xylazine, and acepromazine. The hair over the scalp was removed using clippers; lidocaine was applied to the scalp, which was then was cleaned with ethanol. Subsequently a scalp incision was made; the skull was exposed, and a metal bracket was affixed to the skull with glue, leaving an exposed circular area of the skull. A 2 × 2 mm cranial window of 10-15 µm thickness was fashioned using a high-speed micro-drill (38).

For blood vessel visualization, 100 ul of 0.1 mg/ml Evans blue (Sigma, St. Louis, MO) and 100 ul of tomato lectin DyLight 488 (Vector Labs, Burlingame, CA) was injected intravenously via the retro-orbital sinus prior to imaging. Mice were then imaged through the cranial window using a Leica SP8 two-photon microscope with an 8,000-Hz resonant scanner, a 25 × collar-corrected water-dipping objective (1.0 NA), a quad HyD external detector array, a Mai Tai HP DeepSee Laser (Spectra-Physics, Santa Clara, CA) tuned to 905 nm (for GFP and DyLight 488) and an Insight DS laser (Spectra-Physics) tuned to 1,050 nm (for Evans blue). Three-dimensional (3D) images were captured using z-stacks of 100 µm in depth (2.5-µm step size). The 3D image stacks obtained were subsequently imported to Imaris version 9.0 software (Bitplane, Concord, MA) for further analysis and to generate maximal projections.

Following intravital imaging, images were imported to Imaris 9.0. The volume of vascular coverage was quantified using the surfaces function to mask Evans blue and tomato lectin DyLight 488 positive vessels and calculate their volume. The total vessel volume was then reported as a fraction of the total volume of the volume of the three-dimensional image acquired.
Vascular Perfusion of Mouse Model

Following heparinization, carbon dioxide narcosis, and bilateral thoracotomy, the vasculature of the mouse was casted with Microfil silicate polymer (Flowtech Inc, Carver, MA), mixed in a 2:7:1 (Microfil:diluent:polymerizing agent) ratio optimized to allow arterial-venous transit, through a 30G needle secured in the exposed thoracic aorta as previously described (17). This was modified from a previous method (39). Direct visualization of complete filling of the diploic veins was used as the endpoint (17).

Ex Vivo Imaging of Mouse Model Head and Spine

Intact polymer-casted mouse samples were scanned via 14T MRI (Bruker Biospin Inc. Billerica, MA) and Bruker SkyScan1172 Micro-CT (Micro Photonics, Inc., Allentown, PA, USA, SkyScan, Kontich, Belgium), as previously described (17). Horos Imaging Software and Bruker software suite for MRI and micro-CT imaging facilitated image reconstruction and analysis, respectively (17).

Histology

For whole head histology and microscopy, formalin fixed, paraffin-embedded tissue specimens from mice were cut in 4 μm sections that were then transferred onto charged glass slides. After deparaffinization in xylene and subsequent rehydration in a series of graded ethanol baths, specimens were either stained using hematoxylin and eosin or underwent immunohistochemistry on a Leica Bond Max automated staining system. CD34 (Abcam 185732, Cambridge MA) was probed using citrate antigen retrieval. Histological slides were viewed using a Nikon Eclipse Ci microscope; images were digitally stored at 2x and 4x magnification using Nikon DS-L4 software.

Immunofluorescence and Confocal Imaging
The superficial vascular plexus of the retina was evaluated via whole mount, immunofluorescent staining, and confocal imaging in a total of 12 mice: two mutant and two littermate Cre-only control mice at each post-natal day 7, 14, and 21. The eyes were enucleated. The optic nerve, extra-ocular muscles, and connective tissues were removed posteriorly; the cornea and lens were removed anteriorly. The retina was removed intact and then divided into quadrants for flat whole mount on a charged glass slide.

The dura of the calvarium was evaluated intact. A midline incision was made in the scalp to expose the calvarium from the frontonasal suture to the crano-cervical junction. The dorsal cranio-cervical muscles were elevated from the skull base, and the temporalis muscles were elevated from the temporal fossa. The calvarium and dura were circumferentially elevated with the initial incisions made through the external auditory canal bilaterally; this was connected anteriorly to the frontonasal suture and posteriorly to the lambdoidal suture. For confocal imaging, the calvarium was placed in a 17 mm glass bottom Willco-dish with the dura facing up.

Both retinal whole mount slides and calvaria samples underwent the same staining process as follows. Samples were washed in 1X phosphate buffered saline with 0.2% Triton-X (T-PBS) and subsequently blocked with 5% bovine serum albumin in T-PBS overnight at 4°C. Samples were then incubated at room temperature in 0.5% T-PBS for five minutes, three times, and then in 0.1 mM CaCl₂, 20 ug/uL Isolectin GS-IB₄-AF488 antibody (Invitrogen I21411) in 5% BSA in T-PBS overnight at 4°C. Samples were washed in T-PBS and incubated overnight at 4°C. Samples were then incubated in 4′,6-diamidino-2-phenylindole (DAPI; 1:1000) overnight at 4°C. Samples were then washed in 0.5% T-PBS for 4 hours followed by 0.1 mM CaCl₂/PBS at room temperature. All confocal imaging was performed on the Zeiss
LSM 780. For the dural samples, the objective lens was EC Plan-Neofluar 10x/0.3, the pixel size was 0.83 µm, and the optical section was 1.9 µm.

Retinal confocal images were evaluated using AngioTool to quantify junction density, lacunarity, and vessel percentage per unit area (40).

Manual Microdissection and Determination of Allele Frequency

Variant EPAS1 allele frequency was measured in resected paraganglioma/pheochromocytoma in two patients. Tumor, adjacent vessel, and adjacent non-tumor/non-vessel tissues were manually micro-dissected from paraffin-embedded sections. Genomic DNA was extracted from these micro-dissected samples and used for ddPCR, which was performed with the BioRad QX200 ddPCR system in the Genomics Core Facility of the NCI Center for Cancer Research (CCR), according to the manufacturer’s instructions. Variant allele frequency measurement assay was designed based on the human EPAS1 genomic sequence with the Bio-Rad website tool. The probe for the wild-type allele was labeled with Hexachloro (HEX) fluorescence, and the probe for the EPAS1 mutant allele (P531S) was labelled with Fluorescein (FAM) fluorescence. The results were analyzed with the QuantaSoft software (Bio-Rad, Hercules CA).

Statistics

Data was analyzed via two-tailed unpaired t-test when appropriate with a threshold of significance of p value < 0.05.

Study Approval

The Institutional Review Board of the Eunice Kennedy Shriver National Institute of Child Health and Development (NICHD, ClinicalTrials.gov Identifier: NCT00004847) approved the study protocol. Written informed consent was obtained from all participants. The research study followed all applicable
institutional and governmental regulations concerning the ethical use of animals (NICHD animal study proposal #18-028).
Author Contributions

JSR conceived the study, identified the malformations, performed experiments, collected and analyzed data, drafted and revised the manuscript. HW generated the transgenic mouse model, performed allele frequency experiments, and revised the manuscript. PMD performed retinal whole mount staining and confocal imaging and reviewed the manuscript. AIC collected mouse MRI, micro-CT, and dural confocal data, evaluated patient and mouse imaging, quantified retinal confocal data, drafted and revised the manuscript. PM performed intravital two-photon microscopy mouse experiments, analyzed data, and revised the manuscript. CX performed allele frequency experiments. AJ collected and analyzed patient data and revised the manuscript. NE performed histology and staining and revised the manuscript. DRD performed ex vivo imaging experiments and revised the manuscript. JM performed ex vivo imaging experiments and revised the manuscript. MAN collected and analyzed patient data and revised the manuscript. RHK performed vascular perfusion mouse experiments, collected and analyzed data, and revised the manuscript. BRR analyzed patient data, drafted and revised the manuscript. JGS analyzed patient data and revised the manuscript. AP analyzed patient data and revised the manuscript. RFS analyzed patient data and revised the manuscript. AV analyzed patient and mouse experimental data and revised the manuscript. MRG analyzed patient data and revised the manuscript. DM analyzed mouse experimental data, revised the manuscript. EC collected and analyzed patient ophthalmologic data and revised the manuscript. BAK analyzed patient and mouse data and revised the manuscript. JDH analyzed patient and mouse data and revised the manuscript. ZZ conceived the study, analyzed patient and mouse data, and revised the manuscript. KP conceived the study, analyzed patient and mouse data, and revised the manuscript.
Acknowledgments

The authors would like to thank the patients and participating health care professionals.
References

Figures and Legends
Figure 1. Intracranial Malformations and Rete Mirabile in HIF-2α-Gain-of-Function Syndrome

Patients. Representative images are shown. Panel A: Sagittal T1-weighted post-contrast MRI of the head of patient 1 shows a subarachnoid cavernous angioma (arrow). Prominent interstitial fluid or Virchow-Robins spaces are seen within the corpus callosum (double-lined arrows); these are seen throughout the parenchyma following veins (white circle). Prominent tentorial veins are also seen (arrowhead). Panel B: Axial T1-FLAIR (left) and T2-weighted (right) sequences of the same patient shows the subarachnoid cavernous angioma (arrow) arising from veins. This corresponds to the blue line in panel A. Panel C: Reconstruction of time-of-flight MR angiogram of patient 3 shows dysplastic segments of the internal carotid artery bilaterally (arrows). Panel D: Coronal CT of the neck with contrast of the same patient shows a plexiform jugular vein surrounding a dysplastic carotid, known as a rete mirabile, at the cranio-cervical junction on the right (arrow); Volumetric reconstruction of the same CT of the neck demonstrating rete mirabile on the right and left (arrows). ICA, internal carotid artery; IJV, internal jugular vein
Figure 2. Extrinsic Cervical Spine Venous Malformations in HIF-2α-Gain-of-Function Syndrome

Patients. Representative images are shown. Panel A: Axial CT of the neck with contrast of patient 1 shows cervical dysraphism at the level of C2 (left) due to a subfascial cavernous malformation of the upper neck (arrow). The malformation is continuous with the epidural veins (double-line arrow) and large veins of the external spinal system (arrowhead). At the level of C3-4 (middle), the malformation (arrow) drains to a persistent segmental vein (arrowheads) of the spinal column bilaterally; these surround the vertebral artery (double-line arrow). Large veins are seen throughout the soft tissues. Sagittal view of the left side of the same CT of the neck (right) showing the corresponding axial plane (green line). The posterior condylar emissary vein (arrow) is also seen draining to the malformation.

Panel B: Posterior coronal view of the volumetric reconstruction of CT of the neck with contrast of patient 1 highlighting contrast and bone and excluding soft tissue demonstrates the veins (blue; arrowheads) entering and within the cavernous malformation (arrow) lined by persistent mesenchyme (red outline) extending from beneath the skull base down the length of the cervical spine. Panel C: Sagittal T1-weighted post-contrast MRI of the head demonstrates large sinusoidal veins (arrows) throughout the left lateral aspect of the neck of patient 2. Panel D: Coronal CT of the neck with contrast of patient 1 shows a venous malformation draining to the left jugular and subclavian veins (arrow).
Figure 3. Meningeal and Parenchymal Venous Malformations in HIF-2α-Gain-of-Function Syndrome Patients. Panel A: Mid-sagittal T1-weighted MRI of the cervical spine with contrast of patient 1 shows the cavernous malformation of the neck (arrow) and multiple contrast enhancing vessels behind the C4-7 vertebral bodies (arrowheads). Contrast enhancement in abnormal appearing regions of vertebral bodies are also seen (double line arrows). Adjacent slice of the same MRI shows contrast enhancement of the meninges connecting to the veins of the malformation (arrowheads) on the left. Abnormal enhancement of the bone and ligaments (double-lined arrows) is found to be continuous with contrast enhancement within the dura posterior to the vertebral bodies (dashed arrows). The neck malformation is again seen (arrow). Panel B: Posterior coronal view of volumetric reconstruction of the same 3D T1-weighted post-contrast sequence MRI excluding parenchyma and highlighting bone and contrast shows a venous malformation (asterisk) originating from the anterior spinal vein (ASV) corresponding to the intra-dural contrast enhancing vessels in panel A; the ASV is connected (arrowheads) to the tentorium (T). BA, basilar artery. Panel C: Axial T1-weighted post-contrast MRI of the same patient shows the veins in the dural nerve root sleeve (arrowheads) entering the spinal cord with a widened anterior median sulcus; the enlarged external spinal column veins are also seen (arrows). Panel D: Volumetric reconstruction of T1-weighted post-contrast MRI of the head of patient 2 shows a developmental configuration of the tentorial veins and sinuses on the left (arrow); the left transverse sinus (TS) is smaller than the right.
Figure 4: Venous Anomalies and Malformations in HIF-2α-Gain-of-Function Syndrome Mouse Model. Representative images are shown. Panel A: Axial view 3D volumetric reconstruction of micro-CT of the polymer-casted mouse model (MUT) shows a prominent confluence of sinuses (arrow) compared to control (CTRL) and a vascular malformation arising from the junction of the superior sagittal sinus and frontoparietal dural sinuses (double-lined arrow). Prominent occipital emissary veins (arrowheads) are seen in the mutant. Panel B: Sagittal ex vivo T1-weighted MRI (top) shows an enlarged vein of Galen (arrowhead) arising from a large superior sagittal sinus (arrow) in the mutant; the coronal slice (middle) corresponds to the green line in the sagittal view and shows prominent vessels throughout the parenchyma. Mid-sagittal section of another mutant (bottom) shows a lesion in the olfactory bulb (arrow) arising from large anomalous veins (arrowhead). The normal caliber of the vein of Galen (arrow) is shown in the control. Panel C: Mid-sagittal 3D volumetric reconstruction of micro-CT (left) of the mutant from panel B (bottom) shows the lesion in the olfactory bulb (arrow) and the draining vessel (arrowhead). Coronal histologic section (right) of the same sample at 10× magnification stained with hematoxylin and eosin shows a subarachnoid cerebrospinal fluid (CSF) cavity (arrow) between the olfactory bulbs surrounding the anterior portion of the falx, which has large veins in it (arrowhead), most likely consistent with CSF-venous fistula, as supported by the retrograde perfusion of polymer into this space seen on micro-CT. Panel D: Gross photograph of a suspected cavernous malformation (arrow) arising from a branch of the inferior vena cava (arrowhead) in the mutant. Heart (H), Lung (L); the right auricle (not visualized) is ligated. Hematoxylin and eosin stained histologic section of the specimen from panel D reveals blood-filled dilated vascular channels associated with organizing thrombotic material and reactive inflammation consistent with cavernous angioma.
Figure 5: Failure of Early Vascular Regression in *EPAS1*-Gain-of-Function Mouse Model Leads to Persistent Venous Anomalies and Malformations. Panel A: Representative images of intravital two-photon microscopy of leptomeningeal and parenchymal vessels through a thinned skull window following retro-orbital intravenous injection for tomato lectin DyLight 488 and Evans blue.
demonstrated increased density and tortuosity of pial arterioles and venules and parenchymal capillaries in the mutant compared to the littermate control. Scale bar = 50 microns. Quantification of n=6 (3 mutant, 3 control) is shown; two-tailed t-test p value = 0.014. Data represents mean ± standard error of the mean. **Panel B:** Hematoxylin and eosin staining of the mouse model brain shows a developmentally large vein of Galen (arrow), large leptomeningeal and parenchymal veins (arrowheads), and cavernous angiomas arising directly from these veins (double-line arrow); controls are shown. Large veins throughout enlarged Virchow-Robin spaces are also seen in the mutant. **Panel C:** Representative images of isoelectin B4 staining of the mouse model superficial plexus of the retina at post-natal time points 7, 14, and 21 days (P7-21), during which the retinal vasculature of the mouse completes development, demonstrates that the plexiform network of veins fail to regress in the mutant compared to the control. This persists in the dura as evaluated at 5 months old.
Tables
Table 1. *EPAS1*-gain-of-function Syndrome Patient Characteristics and Malformations

<table>
<thead>
<tr>
<th>Patient Characteristics</th>
<th>n=9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>37</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>15</td>
</tr>
<tr>
<td>Range</td>
<td>16-63</td>
</tr>
<tr>
<td>Sex (n)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>2</td>
</tr>
<tr>
<td>Female</td>
<td>7</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>9</td>
</tr>
<tr>
<td>Black</td>
<td>0</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0</td>
</tr>
<tr>
<td>Asian</td>
<td>0</td>
</tr>
<tr>
<td>Mutation Status</td>
<td></td>
</tr>
<tr>
<td>A530V</td>
<td>2</td>
</tr>
<tr>
<td>A530T</td>
<td>1</td>
</tr>
<tr>
<td>P531S</td>
<td>2</td>
</tr>
<tr>
<td>D539N</td>
<td>3</td>
</tr>
<tr>
<td>Y532C</td>
<td>1</td>
</tr>
<tr>
<td>Malformations (n)</td>
<td></td>
</tr>
<tr>
<td>Ocular</td>
<td></td>
</tr>
<tr>
<td>Congenital Optic Disc Malformation</td>
<td>7</td>
</tr>
<tr>
<td>Morning Glory Anomaly</td>
<td>2</td>
</tr>
<tr>
<td>Fibrovascular Membrane</td>
<td>7</td>
</tr>
<tr>
<td>Retinal Hemangiomatous Lesion</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhage from Central Retinal Venous Malformation</td>
<td>1</td>
</tr>
<tr>
<td>Retinal Hemangioblastoma</td>
<td>1</td>
</tr>
<tr>
<td>Brain</td>
<td></td>
</tr>
<tr>
<td>Subarachnoid Cavernous Malformation</td>
<td>2</td>
</tr>
<tr>
<td>Parenchymal Venous Malformation</td>
<td>2</td>
</tr>
<tr>
<td>Prominent Vein of Galen</td>
<td>7</td>
</tr>
<tr>
<td>Quadrigeminal Cistern Venous Malformation</td>
<td>5</td>
</tr>
<tr>
<td>Spine</td>
<td></td>
</tr>
<tr>
<td>Combined Dural-Medullary Venous Malformation</td>
<td>1</td>
</tr>
<tr>
<td>Enlarged Cervical Spinal Cord Central Canal</td>
<td>1</td>
</tr>
<tr>
<td>Neck</td>
<td></td>
</tr>
<tr>
<td>Rete Mirabile</td>
<td>5</td>
</tr>
<tr>
<td>Sub-Fascial Cavernous Malformation</td>
<td>7</td>
</tr>
<tr>
<td>Cervical Venous Sinuses</td>
<td>6</td>
</tr>
<tr>
<td>Prominent Vertebral Veins</td>
<td>4</td>
</tr>
<tr>
<td>Subclavian Vein Malformation</td>
<td>3</td>
</tr>
<tr>
<td>Systemic</td>
<td></td>
</tr>
<tr>
<td>Aberrant Extrinsic and Intrinsic Spinal Venous Drainage to IVC</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 1. EPAS1-gain-of-function Syndrome Patient Characteristics and Malformations. Age range for the 9 patients in the study is provided with mean and standard deviation (years). Numbers of male and female patients are provided, as are numbers of patients with each mutation of the oxygen degradation domain of HIF-2α. Numbers of patients with vascular malformations of the eye, brain, spine, neck and systemic drainage are given.