Comprehensive plasma proteomic profiling reveals biomarkers for active tuberculosis

Diana J. Garay-Baquero, … , Spiros D. Garbis, Paul Elkington

Clinical Medicine In-Press Preview Infectious disease

Background

Tuberculosis (TB) kills more people than any other infection and new diagnostic tests to identify active cases are urgently required. We aimed to discover and verify novel markers for TB in non-depleted plasma.

Methods

We applied an optimised quantitative proteomics discovery methodology based on multidimensional and orthogonal liquid chromatographic separation hyphenated with high-resolution mass spectrometry (q3D LC-MS) to study non-depleted plasma of 11 patients with active TB compared to 10 healthy control donors. Prioritised candidates were verified in an independent UK-based (n=118) and a South African cohorts (n=203).

Results

We generated the most comprehensive TB plasma proteome to date, profiling 5022 proteins spanning 11 orders-of-magnitude concentration range with diverse biochemical and molecular properties. We further analysed the predominantly low molecular weight sub-proteome; identifying 46 proteins with significantly increased and 90 with decreased abundance (peptide FDR ≤1%, q-value ≤0.05). Biological network analysis showed regulation of new pathways involving lipid and organophosphate ester transport. Verification was performed for novel candidate biomarkers (CFHR5, ILF2) in two independent cohorts. These proteins were elevated in both TB and other respiratory diseases (ORD). Receiver-operating-characteristics analyses using a 5-protein panel (CFHR5, LRG1, CRP, LBP and SAA1) […]

Find the latest version:

https://jci.me/137427/pdf
Comprehensive plasma proteomic profiling reveals biomarkers for active tuberculosis

Diana J. Garay-Baquero1,2,3, Cory H. White1,4, Naomi F. Walker4,5,6,7, Marc Tebruegge8,9,10, Hannah F. Schiff4, Cesar Ugarte Gil7,11, Stephen Morris-Jones12,13, Ben G Marshall1,14, Antigoni Manousopoulou2,3, John Adamson15, Andres F. Vallejo1, Magdalena K. Bielecka1, Robert J. Wilkinson4,6,16,17, Liku B. Tezera1,2, Christopher H. Woelk1,1, Spiros D. Garbis2,3,18, Paul Elkington1,2,14

1 School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK.
2 Institute for Life Sciences, University of Southampton, UK.
3 Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA.
4 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa.
5 Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
6 Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa.
7 TB Centre and Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London, UK.
8 Department of Paediatric Infectious Diseases & Immunology, Evelina London Children’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK.
9 Department of Infection, Immunity, and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
10 Department of Paediatrics, University of Melbourne, Parkville, Australia.
11 Instituto de Medicina Tropical Alexander von Humboldt, School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru.
12 Department of Microbiology, University College London Hospitals NHS Trust, London, UK.
13 Division of Infection and Immunity, University College London, London, UK.
14 NIHR Biomedical Research Centre, University Hospital NHS Foundation Trust, Southampton, UK.
15 Pharmacology Core, Africa Health Research Institute (AHRI), Durban, South Africa.
16 The Francis Crick Institute, London, UK.
17 Department of Infectious Diseases, Imperial College, London, UK.
18 Cancer Sciences Division, Faculty of Medicine, University of Southampton, UK.
19 Current address: Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA.
20 Current address: Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
Address for correspondence:
Professor Paul T Elkington Dr. Spiros D Garbis
Clinical and Experimental Sciences Proteome Exploration Laboratory
University of Southampton Beckman Institute
Southampton SO16 1YD, UK Division of Biology and Biological Engineering
California Institute of Technology Pasadena, California, 91125, USA
Tel: 00 44 23 8079 6671 Tel: 00 1 626 395 2339
E-mail: p.elkington@soton.ac.uk E-mail: sgarbis@caltech.edu

Running title: Comprehensive TB plasma proteome

Keywords: plasma, proteomics, tuberculosis, diagnosis, biomarker, bioinformatic analysis

The funding body requires a creative Commons CC-BY license for this work
No authors declare a conflict of interest
Abstract

Background
Tuberculosis (TB) kills more people than any other infection and new diagnostic tests to identify active cases are urgently required. We aimed to discover and verify novel markers for TB in non-depleted plasma.

Methods
We applied an optimised quantitative proteomics discovery methodology based on multidimensional and orthogonal liquid chromatographic separation hyphenated with high-resolution mass spectrometry (q3D LC-MS) to study non-depleted plasma of 11 patients with active TB compared to 10 healthy control donors. Prioritised candidates were verified in an independent UK-based (n=118) and a South African cohorts (n=203).

Results
We generated the most comprehensive TB plasma proteome to date, profiling 5022 proteins spanning 11 orders-of-magnitude concentration range with diverse biochemical and molecular properties. We further analysed the predominantly low molecular weight sub-proteome; identifying 46 proteins with significantly increased and 90 with decreased abundance (peptide false discovery rate, FDR ≤1%, q-value ≤0.05). Biological network analysis showed regulation of new pathways involving lipid and organophosphate ester transport. Verification was performed for novel candidate biomarkers (CFHR5, ILF2) in two independent cohorts. These proteins were elevated in both TB and other respiratory diseases (ORD). Receiver-operating-characteristics analyses using a 5-protein panel (CFHR5, LRG1, CRP, LBP and SAA1) exhibited discriminatory power in distinguishing between TB and ORD (AUC =0.81).

Conclusions
We report the most comprehensive TB plasma proteome to date, identifying numerous novel markers with verification in two independent cohorts, which led to a 5-protein biosignature with potential to improve TB diagnosis. With further development, these biomarkers have potential as a diagnostic triage test.

Funding
Colombia: Colciencias. UK: Medical Research Council, Innovate UK, National Institute for Health Research, Academy of Medical Sciences. Peru: Program for Advanced Research Capacities for AIDS. South Africa: Wellcome Centre for Infectious Diseases Research.
Introduction

The tuberculosis (TB) pandemic continues relentlessly, killing more humans than any other infectious disease, and progress is lagging behind other major diseases such as HIV and malaria (1). A fundamental issue with controlling the global pandemic is the inadequacy of current diagnostic tests for TB, which have multiple limitations such as insufficient sensitivity, high cost and reliance on laboratory infrastructure (2, 3). The World Health Organisation has defined the characteristics of an optimal TB diagnostic, including low-cost, use of a non-sputum sample, high sensitivity and specificity, as well as stability at extremes of temperature and humidity, and may include both rule-in and rule-out tests (4). However, development of a point-of-care test suitable for resource-limited settings faces multiple challenges in the pathway from discovery to validation and implementation, such as translation between platforms, application across different populations and the disease heterogeneity of TB.

Proteins have been proposed as viable diagnostic candidates given their phenotypic relevance and stability under specified conditions. Blood plasma contains a wide spectrum of proteins that may serve as biological signatures of physiological status during homeostasis or its perturbation (5). For example, the plasma matrix encompasses tissue leakage proteins, thus providing systemic and organotypic insight about specific immunopathologic features such as lung tissue destruction relevant to active TB (6, 7). Furthermore, plasma protein signatures are highly amenable for translation to rapid test devices and this technology is rapidly evolving, including colorimetric gold nanoparticles on paper-based devices, label-free biosensors and nanofluidic disposable chips (8, 9). Extensive proteomic discovery research has been conducted in TB. Although this has identified novel diagnostic markers for the active disease (10-16) and progression from latent disease (17), an optimal diagnostic panel has yet to be defined (18). Other analytes, such as matrix degradation products, have been found by a hypothesis-driven approach (7, 19), but conversely have not been identified by mass spectrometry based strategies. This implies that improved discovery strategies are required to increase the plasma proteome coverage, thus improving the prospect in capturing novel protein markers with potential clinical utility.

Current limitations to mainstream serum or plasma proteomics pipelines partly stems from the predominance in protein mass (>95%) of the top 20 most abundant proteins. These high abundant proteins either mask the presence of or are non-covalently bound to lower abundant proteins with potential clinical relevance. In an effort to overcome this limitation, an initial serum/plasma depletion step to remove such high abundance proteins is typically employed prior to the mass spectrometry-based analysis. This plasma proteome analysis strategy has been used in samples from patients with TB (11, 13, 20-24). However, this approach will result in the inadvertent loss of a wide spectrum of physiologically important proteins including those typically encountered in lipid microvesicles such
as exosomes, proteases and their cleavage products, and native peptides such as hormones (25, 26).

Consequently, an alternative methodological approach has been optimised, wherein the entire
repertoire of secreted and exosome-enriched proteins, including the high-abundant carrier and
immunoglobulin proteins, and their derivative proteotypic peptides are subjected to multi-dimensional
or orthogonal liquid chromatographic separation combined with high-definition mass spectrometry
analysis (Figure 1) (27-29). The present study optimised critical aspects of this methodology to
generate a highly comprehensive plasma proteome coverage to capture novel biomarkers in active
TB.

Results

Proteomic analysis of non-depleted plasma identifies numerous modulated proteins in TB

For each sample, four protein segments were generated from plasma by high-performance size
exclusion chromatography (HP-SEC) partitioning under highly chaotropic mobile phase conditions.
Then, each HP-SEC segment was subjected to downstream 2D LC-MS analysis to achieve a
comprehensive profile of the non-depleted plasma proteome (Supplementary figure 1). The HP-SEC
fractionation traces were highly reproducible (Supplementary figure 2). All four segments from one
set of seven plasma samples, comprising four samples from active TB patients, three from healthy
donors and one master pool (Set A, Supplementary table 1) were profiled to generate an exploratory
in-depth plasma proteome in TB (Figure 2). Samples included in this first stage were obtained from
donors from South Africa and Peru. The samples from Peru were collected prospectively to match
BMI and age of the donors from South Africa (Supplementary table 1). A total of 5022 non-
redundant proteins (peptide FDR ≤5%) were identified from which 3577 were quantified across all 8
samples. Only quantified proteins profiled at a strict 1% FDR were subjected to further bioinformatic
and statistical analysis. Proteins profiled in the sub-proteome contained in segment four presented the
widest distribution of molecular weight raging from 5KDa to 630KDa (Figure 2A). A total of 53% of
the quantified proteins had reported circulating levels in the literature or the human plasma dataset
(integrated) from the reference PaxDb4.1 protein abundance database (30, 31). Based on these reported
circulating levels, the plasma proteomic profile covered abundance levels of 11 orders of magnitude
(Figure 2B) representing classical, tissue-leakage and signalling proteins (32). Furthermore, 905
profiled proteins were annotated as exosome-, microvesicle- or microparticle-derived proteins (33).
The actual abundance dynamic range is expected to be larger, as the LC-MS signal intensity observed
for many proteins with unknown native concentration levels is below that of proteins with the lowest
previously reported concentrations.

Principal component analysis (PCA) demonstrated that this plasma proteome could distinguish
between controls and active TB patients (Figure 2C). Overall, 62% of the variance was explained by
PC1 and PC2. The master pool was a combination of plasma from healthy control and TB patients, and clustered in the centre of control and diseased groups. One TB patient profile (reporter ion at \(m/z \) 121) clustered with the control group, and review of the clinical data showed that although the *Mycobacterium tuberculosis* (*Mtb*) sputum culture was positive, the plasma CRP level was normal and the chest X-ray showed no consolidation, suggesting very early disease, in contrast to all other patients who had lung inflammation. This demonstrates that proteomic profiling reflects disease heterogeneity that is consistent with clinical features.

Similar to the PCA, Spearman correlation showed clustering between TB and controls, but with reporter ion at \(m/z \) 121 clustering with controls (Figure 2D). Defined patterns of protein expression associated to the disease status were observed in two clusters. Cluster blue includes proteins with reduced abundance in the TB group while cluster magenta contains proteins with increased abundance in the TB group. Gene ontology enrichment analysis indicated regulation of immune response to external stimulus mainly through the innate response, including the complement pathway and phagocytosis.

Recently, analytical models such as Linear Models for Microarray Data (LIMMA) have been translated to proteomic datasets from large-scale gene expression data (34). Empirical Bayes approaches have been proven to be particularly powerful with small sample numbers by using the full datasets to reduce observed sample variances towards an estimate while allowing for variance distribution (35-37). This statistical approach results in a more realistic distribution of biological variances compared to other methods. Furthermore, LIMMA offered the best statistical properties when compared to generalised linear model (GLM) and mixed models in the context of multiplexed isobaric quantitative proteomics (34). Statistical assessment of differential expression showed 119 proteins significantly modulated (nominal \(p\)-value \(\leq 0.05 \)) (Supplementary table 2). However, after FDR correction for multiple comparisons, no significant differences were retained. Therefore, we increased the sample size to identify TB biomarker proteins with high confidence.

In-depth analysis of segment 4 identifies multiple new TB biomarkers

Robust statistics are crucial at the discovery stage of biomarker identification to increase chances of later validation. Considering that HP-SEC segment 4 captured the most diverse range of protein molecular weight (Figure 2A), we interrogated this segment further to increase statistical power. Reported simulations for statistical power in proteomic studies, including power curves estimated for iTRAQ relative ratios (37), predict that a minimum of 9 biological or clinical replicate samples per group are needed to achieve a statistical power of 0.9 when an effect size of 1.5 is considered (37, 38). Therefore, 10 healthy control and 11 active TB plasma samples were analysed. These samples were
randomly allocated into three iTRAQ experiments (Supplementary figure 2A) and analysed as three
independent mass spectrometry (MS) experiments. A maximum of 1,248 proteins were quantified at
1% FDR and 426 proteins were common to the three MS runs (Supplementary figure 2B). The overall
relative protein expression variation was evaluated using the common proteins profiled across the
three independent iTRAQ experiments. The relative standard deviation (RSD) was >25, which
accounts for the combined technical and biological variation (Supplementary figure 2C). Using an
alternative approach to estimate the mean-variance relationship in the data, the locally weighted
regression (LOWESS) trend was calculated using the function voom (39) from the limma R package,
analysing the same group of proteins (Supplementary figure 2D). The square-root-standard-deviation,
sqrt (SD), was >1.4 and the LOWESS voom trend indicates a degree of heteroscedasticity in the data,
where greater log2 relative expression values were related to higher variation. The range of RSD and
sqrt(SD) estimated across these three multidimensional experiments indicates a good overall method
performance.

The datasets generated were inspected to evaluate batch effects and data distribution. Sixty percent of
the variance was explained by the batch (Supplementary figure 4A). The group effect was then
distinguishable when considering dimensions PC2 and PC3 (~17% variance, Supplementary figure
4B). Batch effect correction was performed using normalisation to the master pool or by ComBat (40)
(Supplementary figure 4C and 4D, respectively), with ComBat providing the best reduction of batch
effects. Statistical assessment of significant differential protein expression using LIMMA revealed
136 proteins significantly modulated (q-value ≤0.05; Supplementary table 3). Proteins with
significantly increased and reduced abundance were identified in patients with active TB infection
(Figure 3A). In addition to the identification of proteins known to be regulated during the course of
the active TB immunopathology, such as CRP, SAA, S100A8, RBP4, MMP14 and diverse
apolipoproteins, completely novel proteins were found, such as DLG4, SFTPB, CFHR5 and SPP2.

Further data mining of the output from segment 4 was performed to interpret biologically relevant
patterns in pulmonary TB. Weighted gene co-expression network analysis (WGCNA) (41) was used
to explore relationships between clusters of highly correlated proteins (colour modules) and specific
sample traits. Technical and biological variables of batch, smoking history and ethnicity were
evaluated as possible confounders in the data using hierarchical clustering. The resulting dendrogram
demonstrated that disease status was the primary determinant of sample clustering (Supplementary
figure 5A). In order to select highly interconnected proteins exhibiting the strongest correlation with
the disease status, detection of modules was performed (Supplementary figure 5B). The dendrogram
of the topological overlap matrix (TOM) representing clusters of highly interconnected proteins with
assigned colour modules and association to particular traits, demonstrated that the protein module
turquoise was strongly associated to disease status (Figure 3B, Z score = -0.87; p-value = 2x10^-07).
One hundred and eighty nine proteins were contained in the turquoise module (Supplementary table
of which 129 (65.8%) were common to the differentially expressed proteins defined with LIMMA (7 protein unique to LIMMA and 60 unique to WGCNA). Gene ontology enrichment was performed using the package clusterProfiler (42) on the turquoise module and demonstrated that proteins profiled were mainly associated to a variety of intracellular and secretory vesicles, extracellular matrix, blood microparticles and lipoprotein particles (Figure 3C). Analysis revealed four main hubs for the top 20 biological processes: inflammatory/acute-phase response, exocytosis/vesicle-mediated transport, lipid transport and proteolysis (Figure 4).

To generate the most robust list of candidates for validation, we identified proteins in common between the module turquoise derived from WGCNA and significant by empirical Bayes moderated t-statistics in LIMMA, thereby combining co-expression analytical approaches and t-statistics. Combining the approaches, we identified 26 common proteins with increased and 20 proteins with reduced abundance, with a high predicted significance (full list, Supplementary table 5; log2 Fold change ≥|0.5|; WGCNA: Z score ≥0.65 and p-value ≤0.05; LIMMA: q-value ≤0.05). This highly stringent approach is likely to omit numerous other differentially regulated proteins, but maximises the chance of subsequent validation for diagnostic use. Proteins in this list are associated to a wide range of biological processes, including acute inflammatory response, defence response to bacterium, lipid localisation, cell adhesion and regulation of peptidase activity (Figure 5).

Host plasma proteins exhibit increased abundance in TB and other respiratory diseases

Circulating levels of five proteins amongst the top 15 proteins with increased expression levels (Table 1) were subjected to independent verification with ELISA or luminex array. C-reactive protein (CRP) and serum amyloid A1 (SAA1) were included in the verification panel as these are considered established major acute-phase effectors and are expected to increase in individuals with pulmonary TB. Lipopolysaccharide binding protein (LBP) and leucine rich alpha-2-glycoprotein 1 (LRG1) have been described in other proteomic TB profiles (11, 43, 44); therefore, the expression of these proteins on specific cohorts may add valuable information for the design of a multi-marker panel. Newly identified proteins from our analysis such as complement factor H related 5 (CFHR5) were additionally selected for verification. Proteins closely biologically associated to the selected proteins were excluded for further verification such as serum amyloid A2 (SAA2), since independency is recognised to benefit performance of multi-marker panels. In addition to these selected candidates, the seven most consistently divergently regulated proteins, analysed by fold change, derived from the profile of HP-SEC segments 1 to 3 were included, RPGRIP1L, FGL1, COMP, KCNN2, TNFSF11, LTN and ILF2, to compare verification efficiency between the smaller and larger discovery groups.

First, we studied a UK-recruited independent cohort of mixed ethnicity from the Multifunctional Integrated Microsystem for rapid point-of-care TB Identification (MIMIC) study, for verification of
selected candidates. CFHR5, LRG1, LBP, SAA1 and CRP showed significantly increased levels of expression in active TB patients when compared to healthy controls or latently infected individuals (Figure 6A-E). Evaluation of the markers selected from the initial discovery experiment on seven samples showed that RPGRIP1L, FGL1, COMP, KCNN2 and TNFSF11 failed verification (Supplementary figure 6). LTN (Supplementary figure 7, \(p-value = 0.04 \)) abundance was significantly higher in TB patients. Additionally, ILF2, identified from segment 3 analysis, showed elevated abundance in latent TB and active TB patients compared to healthy donors (Figure 6F, \(p-value = 0.0005 \)). Consequently, two out of seven proteins successfully verified from the smaller discovery group, whereas all were verified from the larger discovery group. In addition to being elevated in TB, patients with other respiratory diseases (ORD) also exhibited elevated abundance in all verified markers (Figure 6A-F).

Diagnostic performance of individual and combined verified markers was evaluated using Receiver Operator Characteristic (ROC) curves. ROC curves were generated based on two different comparisons: circulating level of markers in active TB patients vs. healthy controls (Figure 7A) and active TB patients vs. ORD patients (Figure 7B). In both cases, the best performance was achieved by combining the 5 markers (CFHR5, LRG1, LBP, SAA1 and CRP). The area under the curve (AUC) was 0.93 (95% confidence interval: 0.89-1.00, \(p-value \leq 0.001 \)) for TB vs. healthy controls and 0.81 (95% confidence interval: 0.68-0.94, \(p-value = 0.001 \)) for TB vs. ORD, thus demonstrating that only the combination of markers allowed the discrimination of active TB from healthy controls and ORD. Although ILF2 abundance was significantly upregulated in the active TB and ORD patients from this cohort (Figure 6F), it did not contribute towards a better diagnostic performance of the panel.

We then further verified the biomarkers in a South African cohort, which included HIV-uninfected and HIV-infected active TB and ORD patients. Again, the novel diagnostic marker CFHR5 exhibited significant increased abundance in HIV-uninfected patients. In HIV co-infected patients, CFHR5 was elevated compared to healthy controls, but not significantly different to healthy HIV-infected individuals, although this group had limited numbers (Figure 8A). CFHR5 showed no significantly increased abundance in ORD, irrespective of HIV status. Again, interpretation may be due to limited sample numbers reducing statistical power. LBP and SAA1 both showed increased abundance in the active TB group regardless of HIV status. This trend was observed relative to the ORD group HIV un- and co-infected (Figure 8B-C). CRP showed increased abundance in TB compared to healthy controls and ORD groups, irrespective of HIV status (cohort data previously published (7)). In this cohort, ILF2 and LRG1 could not be measured due to sample exhaustion and were thus excluded from the panel. A summary of the analytes tested in each cohort and verification results is presented as Supplementary table 6.
ROC curves generated by comparing circulating levels of CFHR5, LBP, SAA1 and CRP in TB patients vs. ORD in the HIV uninfected group showed that the best performance was achieved by combining markers (Figure 9A, AUC 0.89 [95% confidence interval: 0.80-0.98, \(p-value \leq 0.001 \)).

Similarly, in the context of HIV-associated TB, the combination panel performed best, and provided a surprisingly high discrimination between active TB and ORD (Figure 9B, AUC 0.98 [95% confidence interval: 0.94-1.00, \(p-value \leq 0.001 \)). By contrast, the combination of markers did not improve the diagnostic performance when the active TB group was analysed against the healthy controls relative to analysis of CRP alone (Supplementary figure 8). Finally, we evaluated whether our 4-protein panel correlated to sputum mycobacterial load in the South African cohort. Mean Z-scores were calculated from CFHR5, LBP, SAA1 and CRP levels in TB patients (HIV negative) and compared to the bacterial burden in sputum. A significant positive correlation was observed (Spearman coefficient \(r = 0.37 \), \(p-value = 0.03 \)).
We applied a unique non-depletion based quantitative proteomics method (q3D LC-MS) to generate the most comprehensive TB plasma proteome to date. Statistical power was increased by studying one HP-SEC segment in additional patients and combined WGCNA and LIMMA analysis approaches, identified numerous novel host biomarkers with high confidence. We verified a subset of biomarkers in two separate cohorts, with high success rate. Diagnostic accuracy for TB was maximised by use of a multi-marker panel. These markers are frequently also increased in other respiratory conditions and therefore host biomarkers are likely to be of greatest use in a rule-out panel.

Translation of novel biomarkers for clinical utility is challenging, involving a stepwise process where most candidates fail to reach the bedside. Verification of new candidates typically relies on antibody-based assays, requiring change of platform from mass spectrometry to immunoassays prior to field-testing, and this is frequently a point of failure. We completed this transition for three new analytes, thereby supporting the robustness of the approach. Validation will require quantification of the additional 15 entirely new biomarkers in the top candidates (Figure 5, Supplementary table 5) identified by the combined WCGNA and LIMMA approaches, and inter-laboratory collaboration across large cohorts from multi-centre biobanks, including analysis of how biomarkers relate to disease severity and change over time.

Plasma is a complex matrix to analyse, and high-abundant protein depletion is the most common strategy to address this complexity (5, 27-29, 45, 46). However, depletion may inadvertently co-remove important analytes non-covalently bound to high abundance proteins (26). In this study, sample preparation was principally based on the use of orthogonal chromatographic hyper-fractionation instead of depletion. Such a strategy entailed the dissolution of 120μL neat plasma with 7M guanidine/10% methanol that stabilised the protein content and was subjected to HP-SEC separation as part of the hyper-fractionation pipeline. The use of multi-dimensional liquid chromatographic approaches as part of the isobaric quantitative proteomics pipeline has gained increasing prominence in translational research studies (47). Such approaches compensate for the complexity of biological specimens in capturing and analysing very low abundant proteins of clinical significance. Furthermore, they are amenable to laboratory automation and scale-up, thus improving analysis throughput, accuracy and precision (47, 48). In line with this, the collective attributes of the present study method facilitated the analysis of proteins encompassed in blood microparticles, such as exosomes and other lipid vesicles (27, 28), along with protease derived cleavage proteins and soluble proteins. The efficacy of our approach was demonstrated by the profiling of over 5,000 proteins from only 120μL plasma per patient, compared to the identification of a maximum of 800 proteins in similar TB discovery studies from larger volumes of plasma (16, 20, 49). Most importantly, however, the deep proteome coverage achieved also encoded for a wide spectrum of biological and disease
specific pathways and networks of physiological relevance to TB. Encompassed in these pathways and networks were many novel proteins of potential clinical significance.

Analysis of the entire proteome from HP-SEC segments 1 to 4 using seven samples was underpowered for biomarker discovery, with only two out of seven candidates subsequently validating on a larger cohort. Therefore, detailed profiling was focused on the sub-proteome segment 4, which is primarily enriched for low-molecular weight proteins and protein degradation products, recapitulating multiple biological processes (28, 29, 50-52). In-depth profiling of this segment from 10 healthy controls and 11 pulmonary TB patients provided much greater statistical power, consistent with mathematical estimations (38). The high-dimensional data produced from isobaric labelling-based relative quantification (iTRAQ or TMT) poses bioinformatic processing challenges (34). Small sample sizes, incomplete datasets and batch effects across experiments create difficulties in the effective detection of protein abundance changes (35). Batch effects are particularly relevant to multiplexing of iTRAQ experiments. In our study, Combat correction performed better than the most common strategy of normalizing to a common reference sample (Supplementary figure 4).

Complementary analysis using LIMMA and WGCNA on the adjusted data resulted in a powerful approach producing a set of robust markers for verification (Supplementary table 5), with three out of three tested proteins successfully converting to an immunoassay platform, compared to two out of seven from the smaller sample set (Set A profile). Thus, this methodology led to the identification and independent verification of known and novel candidate biomarkers of TB infection.

WGCNA identified one co-expression module as strongly associated to the group TB (turquoise module, p-value = 2x10^{-07}) containing 189 proteins. Ninety-five percent of the differentially expressed proteins identified with LIMMA were common to this module, showing excellent concordance between analytical strategies. Notably, over 60% of the co-expressed proteins showed decreased abundance in the active TB group, suggesting that studying these proteins may provide additional insight into disease process in TB, and analysis should not purely focus on proteins of increased abundance. Gene ontology enrichment of module turquoise revealed regulation of biological processes associated to responses to external stimulus (q value = 2x10^{-03}) encompassing acute-phase/inflammation (q value = 5.2x10^{-06}) and humoral responses (q value = 9.2x10^{-05}). Within this module, CRP, LBP, SAA1, SAA2, S100A8, S100A9, SERPINA3 and HP are involved in the activation of the acute-phase and inflammatory response, which are well described in TB (20, 53, 54). This concordance supports the overall validity of our methodology.

Connected to the acute-phase hubs, proteolysis (q value = 1.1x10^{-06}) and lipid transport and localisation (q value = 1.4x10^{-05}) were significantly enriched. Proteolysis is consistent with the extensive pulmonary destruction that occurs in human TB (55). Among the proteins with increased abundance in this hub, ECM1 was previously reported elevated in saliva of TB patients (56), MMP-14 is expressed in TB
granulomas (57) and PSMB8 may be part of the regulatory cascade of the blood transcriptome of TB patients (58). Among the proteins found with decreased abundance, TIMP2 is an inhibitor of matrix metalloproteinases, and so reduced levels may increase matrix degradation (55). Lipid metabolism was another major signal expressed, and the role of lipids and cholesterol in TB immunopathology remains poorly characterised. Cholesterol uptake and catabolism are central for maintenance of the pathogen in the host and contribute to pathogenesis and virulence (59). However, the low circulating lipid profiles in pulmonary TB patients may be a consequence of the disease or may have wider biological implications. Apolipoproteins are associated to lipid transport and form lipoprotein particles such as HDL, LDL and VLDL. Serum HDL-C concentrations negatively correlate with the radiological extent of disease and smear positivity in pulmonary TB (60). Decreased circulating concentrations of apolipoproteins are consistently reported in different serum/plasma proteomic profiles for pulmonary TB (11-13), in agreement with our findings. Further data mining of these biological processes may identify host-directed therapy targets.

To verify newly-identified biomarkers, well-characterised TB cohorts with complementary profiles and from geographically diverse populations are required (4). We studied two different cohorts for verification, one recruited in the UK and one in South Africa. From the subset of proteins analysed by ELISA or luminex, seven proteins were successfully validated. LBP, CFHR5, CRP and SAA were consistently increased in TB cases in both cohorts. Statistically significant differences were observed despite the wide inter-individual variation in biomarker concentrations, which is expected from clinical TB which has a wide spectrum of disease severity. ILF2 was only verified in the MIMIC cohort due to sample exhaustion, while LTN and LRG were only evaluated in the South African cohort. CFHR5 (complement factor H-related protein 5), ILF2 (Interleukin Enhancer Binding Factor 2) and LTN (E3 ubiquitin-protein ligase listerin) are novel protein candidate biomarkers for TB identified by the discovery phase and all were successfully verified. Consistent with our findings, a recent report identified ILF2 as a potential biomarker in paediatric TB by bioinformatic mining of gene expression datasets (61).

Evaluation of the performance of a subset of markers indicated than combination rather than individual markers provided a better diagnostic ability. In the UK-based cohort, ROC analysis demonstrated that the multi-marker panel comprising CFHR5, LRG1, CRP, LBP and SAA1 performed well in receiver operator curve analysis against healthy controls (AUC = 0.93). However, the discriminatory power was reduced but still significant when compared against other respiratory diseases (AUC = 0.81). Clinically, differentiation against other respiratory conditions is the key comparator for TB diagnosis. Host biomarkers are often limited by lack of specificity and our findings reinforce the importance of choosing correct control groups for verification analysis (18). In the South African cohort including patients with and without HIV infection, the multi-marker panel comprising LBP, CFHR5, CRP and SAA yielded its best performance when TB patients where compared to other
respiratory diseases (AUC=0.98). This is an important finding from a clinical perspective, as
diagnosing TB in HIV-infected patients is generally more challenging than in non-
immunocompromised individuals (2). Furthermore, performance of our panel in both cohorts (UK and
South Africa) comparing ATBI to ORD groups was similar to a different recently validated host
response signature (IL6, IL8, IL18 and VEGF, AUC=0.80) (62). This suggests our preliminary
signature can be further refined by testing of remaining highly significant candidates that have not yet
been studied. The primary difference between the groups is that the UK cohort were hospitalised
patients, whereas the South African cohort were outpatients, and therefore the better performance in
South Africa may reflect the fact the patients were less unwell. For utility of a point-of-care test,
outpatients with respiratory symptoms will be the primary target group.

Significant efforts have been directed to define an optimal plasma protein biosignature for active TB
and recently, extensive testing of candidate proteins identified by predefined discovery panels, such
those measured with luminex, have shown that multi-component or multi-factorial signatures could
give a greater performance than immunological markers despite the heterogeneity of clinical
presentation (62, 63). Inclusion of novel markers that represent the biological diversity of the host
response to the \textit{Mtb} infection in diagnostic panels may be crucial to achieve the analytical
performance required to translate to effective point-of-care devices. From our top list of 46 proteins
identified by both LIMMA and WGCNA from the discovery phase (Supplementary table 5), 21
proteins are entirely novel candidates and involved in a wide range of biological processes.

Consequently, verification and integration with known markers may improve the performance of the
existing signatures. This list recapitulated several potential diagnostic biomarkers identified in a range
of reported plasma proteomic TB signatures (11, 13, 14, 20, 44, 64), including one signature for TB
progression (17), one for cured pulmonary tuberculosis (21) and one for multidrug-resistant TB (65),
demonstrating the ability of our proteomic and bioinformatic approach to detect proteins associated to
the disease status, independent of differences in discovery platforms or patient cohorts. However,
further verification of all the newly reported candidates that we identify is required to refine the
current panel.

Translation of such markers to point-of-care tests with adequate performance will require the
development of multiplex lateral flow assays, and such platforms are currently emerging (66, 67),
though will require careful development. Any assay used as a rule-out test would need population-
based studies to confirm the specificity against standard current clinical practice and emerging blood
protein-based signatures. Due to the overlap between TB and other respiratory conditions, the host
biomarkers identified are potentially best utilised as a rule-out triage test prior to performing more
specific and expensive rule-in tests (68). In the future, analysis of other proteins that are differentially
abundant will become increasingly achievable, given the continuous advancements of LC-MS
methods in terms of throughput and analytical confidence. When combined with machine learning approaches, LC-MS based assays may transform specificity and sensitivity in the diagnosis of TB.

In summary, we developed a non-depletion based proteomic methodology to deeply profile plasma and identify novel biomarkers. We present a unique statistical and bioinformatic pipeline for discovery and selection of candidates for verification that utilises both statistical significance and also correlation of expression patterns to clinical traits. We report numerous novel analytes, with potential to be translated for clinical utility. We have verified a subset of biomarkers from segment 4 by independent antibody-based assays to generate a preliminary diagnostic panel, and similar interrogation of segments 1 to 3 is likely to generate further novel biomarkers. Taken together, developing these host biomarkers into a multiplex lateral flow assay has potential for a near-patient TB rule-out test that fulfils the WHO product characteristics. Such an assay could be a powerful tool to address the global TB pandemic.
Methods

Study Participants

This study included participants from three different cohorts. The participants from the South African cohort were recruited at Ubuntu HIV/TB clinic in Cape Town and were black-African ethnicity from June 2012 to February 2014. Written informed consent was obtained, HIV testing was offered, and chest radiographs were performed as per routine practice. The diagnosis of active TB was based on sputum smear or culture positivity, Gene Xpert results (where available) and chest X-ray examination. Plasma samples from this cohort were retrospectively selected from a cohort collected and previously described (7). Participants from this cross-sectional study were categorised into six groups: i) HIV-uninfected patients without active TB infection (HIV- ATBI -); ii) HIV-uninfected patients with active TB infection (HIV- ATBI +); iii) HIV-uninfected patients without active TB but with symptoms attributable to other respiratory infectious disease (HIV- ORD); iv) HIV-infected without active TB infection (HIV+ ATBI-); v) HIV-infected with active TB infection (HIV+ ATBI+) and vi) HIV-uninfected patients without active TB but with symptoms attributable to other respiratory disease (HIV+ ORD). Microbiological confirmation of the infectious agent was not available for the HIV-/HIV+ ORD groups due to limitations in local diagnostic capability. A randomly selected subset of 11 plasma samples from male participants belonging to the groups HIV- ATBI - and HIV- ATBI + was used for discovery (Supplementary table 1). A larger set of 203 samples from all six groups and including those used for discovery constituted the South African verification cohort and demographic description of this group has been previously reported with CONSORT diagram (7).

Participants from the Peruvian discovery cohort were prospectively recruited at clinics in Lima, Peru to match demographic features such as gender, age and BMI of participants from the South Africa cohort. Recruitment was conducted during 2015. The diagnosis of active TB was based on a TB symptom questionnaire, sputum smear positivity, culture positivity using microscopic-observation drug-susceptibility (MODS) culture and chest X-ray. Healthy control individuals were Quantiferon negative. In total, 10 samples from this cohort were selected for the discovery stage of this study (Supplementary table 1).

A second independent cohort was included for verification of proteomic candidates comprising a subset of 118 participants from the Multifunctional Integrated Microsystem for rapid point-of-care TB Identification (MIMIC) cross-sectional study conducted in the United Kingdom. Recruitment was performed from June 2014 to February 2017. All the participants were HIV uninfected and four categories were defined for this cohort: i) Healthy controls (HC), ii) Latent TB infection (LTBI); iii) Active TB infection (ATBI) and iv) Other respiratory diseases (ORD). Healthy controls were asymptomatic individuals without a history of previous active TB or TB contact and no evidence of
TB infection on routine screening tests (negative interferon-gamma release assay and/or tuberculin skin test result). Participants with latent TB infection were defined based on a positive interferon-gamma release assay and/or tuberculin skin test result, without evidence of active disease after clinical evaluation. All active pulmonary TB cases were individuals with symptomatic respiratory infection that were microbiologically-confirmed to have TB based on any of the following criteria: sputum smear positive, sputum culture positive for \textit{Mtb}, or PCR test positive for \textit{Mtb}. The control group other respiratory diseases (ORD) were symptomatic individuals with microbiologically-confirmed respiratory tract infection caused by a pathogen (viral or bacterial) other than \textit{Mtb}, without a history of previous active TB (Supplementary table 7). The microbiological composition of this group was 31% influenza A/B, 15% \textit{Streptococcus pneumonia}, 8% respiratory syncytial virus, 8% \textit{Staphylococcus aureus}, 4% \textit{Mycoplasma pneumonia}, 4% \textit{Human Metapneumovirus}, 4% H1N1 Influenza A, 4% Methicillin-resistant \textit{Staphylococcus aureus} and 22% unidentified organism.

Plasma processing

Venous blood was collected in sodium citrate vacutainer tubes and plasma prepared according to standard operating procedures at the site of recruitment and stored at -80°C. Aliquots of 120µl of plasma were liquid–fixed with 380µl of 7M guanidine hydrochloride and 10% methanol and stored at -20°C until size exclusion chromatography fractionation was performed for the discovery stage. Aliquots of 20µl of the individual samples available for discovery including control and active TB groups was combined to generate a master pool aimed to control batch effects across different MS experiments. All the plasma samples included in the verification stage were divided into 100µl aliquots to reduce freeze-thaw cycles when received and stored at -80°C until analysis.

Multidimensional plasma proteomic analysis

High-performance size exclusion chromatography (HP-SEC)

A general overview of the plasma proteomic method is presented in Supplementary figure 1A. Plasma samples used for discovery, including four aliquots of the master pool, were individually subjected to HP-SEC pre-fractionation under optimised conditions of the method reported previously (28). Five columns were serially connected: 2 Shodex KW-804 columns, 8.0mm I.D. x 300mm; one Shodex KW-802.5 column, 8.0mm I.D. x 300mm; and 2 Shodex KW-804 columns, operated at 45°C and 1.5mL/min under isocratic elution with 6M guanidine hydrochloride and 10% methanol. Four protein HP-SEC segments were collected in a peak-dependent fashion detected at 280nm and then stored at -20°C until further analysis. HP-SEC separations are presented in Supplementary figure 2A-E. The BEH450 SEC protein standard Mix (Waters, UK) and an aliquot of one control plasma sample were run for day-to-day quality control of the separation variation (Supplementary figure 2F). Variation of retention times was within 2SD for all samples excepting one (Supplementary figure 2G). Protein
segments were dialysis-purified using 3KDa MWCO Slide-A-Lyzer cassettes according to manufacturer’s specifications (Thermo Fisher, Hemel Hempstead, UK) with exchanges of four volumes of 4L of ultrapure water every 12h intervals in a cold room environment (4°C). The resulting dialysates were completely lyophilised using the Edwards Modulyo EF4-174 freeze dryer and Thermo Savant Micro Modulyo-115 benchtop freeze dryer. Protein extracts were stored at -80°C under argon atmosphere.

Trypsin digestion

Total protein lyophilised extracts obtained from each HP-SEC segment were reconstituted with 0.5M TEAB (triethylamonium bicarbonate) and 0.05% SDS (sodium dodecyl sulfate) and sonicated on ice. Protein extracts were then centrifuged for 10 minutes at 16000xg and 4°C and protein content in the supernatants was estimated using the Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, USA) using the A280 program. 120µg of protein volume-adjusted were reduced with 2µL of TCEP (50mM tris-2-carboxymethyl phosphine) and incubated for 1h at 60°C. Reduced samples were then alkylated using 1µL of MMTS (200mM methylmethane thiosulphonate) and incubated 10 minutes at room temperature. Digestion was conducted to a ratio of 1:40 enzyme/substrate with trypsin MS grade (Pierce, Thermo Fisher Scientific, UK) overnight for 16h at 37°C in dark.

Stable isotope labelling

iTRAQ 8-plex tags were equilibrated at room temperature and isopropanol was added accordingly to ensure >60% organic phase during labelling. Each tag was added to the appropriate trypsinised sample, then the labelling reaction was conducted for 2h at room temperature. The reaction was stopped with 8µL of 5% ammonium hydroxylamine. Samples were dried and stored at -20°C until chromatographic separation. The master pool was labelled using the tag 113 and the samples were allocated randomly to the remaining tags as presented in the Supplementary figure 2A.

Offline alkaline RP-HPLC peptide fractionation

Offline peptide fractionation was based on high pH (0.08% v/v NH₄OH) reverse phase (RP) chromatography using the Kromasil C₄ column (3.5μm, 2.1mm x 150mm) and on the Shimadzu HPLC system previously described in the HP-SEC section. iTRAQ labelled tryptic peptides were analytically reconstituted and pooled together with 100µL of mobile phase, centrifuged at 16000xg at room temperature for 10 minutes. Supernatant was injected and separated at a flow rate 0.30mL/min and 30°C. The fractions were collected in a peak-dependent fashion detected at 215nm. Peptide fractions were dried at room temperature with a speedvac concentrator for 4−5h and stored at −20°C until LC−MS analysis. Highly hydrophilic and hydrophobic fractions from the extreme regions of the
chromatographic traces were pooled and further cleaned using Gracepure SPE C18-AQ 100mg/1mL cartridges (Grace, Columbia, USA).

LC-MS analysis

The LC−MS experiments were performed on the Dionex Ultimate 3000 UHPLC system coupled to the high resolution nano-ESI-LTQ-Velos Pro Orbitrap-Elite mass spectrometer (Thermo Fisher Scientific). HCD and CID fragmentation for each of the collected fractions was performed. For the analytical separation the AcclaimPepMap RSLC, 75μm × 25 cm, nanoViper, C18, 2μm particle column (Thermo Fisher Scientific) with trap cartridge retrofitted to a PicoTip emitter (FS360-20-10-D-20-C7) was used for multistep gradient elution. MS characterization of eluting peptides was conducted between 380 and 1500 m/z. The top ten +2 and +3 precursor ions were further characterised by tandem MS. Full MS scans and MS/MS scans were acquired at a resolution of 30000FWMH (complete plasma proteome) or 60000FWMH (detailed analysis segment 4) for profile-mode and 15000FWMH for centroid-mode, respectively, with the lock mass option enabled for the 445.120025m/z ion (DMSO). Data were acquired using Xcalibur software (Thermo Fisher Scientific).

MS data processing

Target-decoy searching of raw mass spectra data was conducted with the Proteome Discoverer 1.4 software (Thermo Fisher Scientific). SequestHT was used for the target decoy search for tryptic peptides, allowing two missed cleavages, 10ppm mass tolerance, and minimum peptide length of 6 amino acids. A maximum of 2 variable (3 equal) modifications; oxidation (M), deamidation (N, Q) and phosphorylation (S, T, Y) were set as dynamic modifications. As static modifications were set: iTRAQ8plex (Any N-terminal), Methylthio (C) and iTRAQ8plex (K). Fragment ion mass tolerance was set to 0.02Da for the FT-acquired HCD spectra and 0.5Da for the IT-acquired CID spectra. FDR was estimated with the Percolator (6.4Bit) and validation was based on q-value <0.01 for high confidence or <0.05 for moderate confidence. All spectra were searched against a concatenated FASTA file including the reviewed UniProtKB SwissProt human proteome and the reference proteome (SwissProt and TrEMBL) for *Mtb* (strain ATCC 25618 / H37Rv), both retrieved on 04 August 2017. All peptide spectrum matches (PSM) of reporter ions and iTRAQ ratios were exported to .txt at 1% FDR or 5% FDR peptide confidence and 50% co-isolation exclusion threshold. Protein grouping was allowed and maximum parsimony principle was applied. Only unique peptides were considered for quantification downstream analysis. Raw precursor ion intensities from unique peptides were imported to R (version 3.3.1) and median-adjusted. Median-normalised peptide intensities were log2-transformed and values were averaged to obtain the mean relative expression for
each protein. Only proteins with relative quantification reported in all the samples was included for statistical analysis.

ELISA and luminex assays

Proteins selected for verification from the proteomic discovery experiments were measured in two different cohorts using ELISA or luminex assays. ELISA measurements comprised candidates for which there are commercially available kits, such as: RPGRIP1L, FGL1, COMP, ILF2, KCNN2, LTN1, LRG1 and SFTPB (2B Scientific Ltd, Upper Heyford, UK and Caltag Medsystems Ltd, Buckingham, UK). One luminex multiplex assay was custom-made for analysis of LBP, COMP, TNFSF11 and CFHR5 and two single-plexes for SAA1 and CRP (Protavio Ltd, Cambridge, UK). CV for the ELISA assays was ≤12% and for the luminex assays was ≤15%. Assays were performed according to manufacturer’s directions.

ROC curves and AUC analysis

Performance of the validated candidates was in first instance assessed by calculating receiver operating curves (ROC) for individual proteins and combined proteins in each verification cohort. The statistical package SPSS Statistics 25 (IBM, Armonk, US) was used for this purpose. ROC analysis was conducted by setting pulmonary TB as a positive test and binary logistic regression probabilities were calculated when analysis of combined markers was performed. Coordinates of the curves was exported to estimate potential cut-off values.

Statistics

Differentially expressed proteins (DEPs) were determined using linear modelling LIMMA (69) followed by FDR correction for multiple correction testing. WGCNA-based analysis was applied to the datasets resulting from the detailed profile of segment 4 to interpret biologically relevant patterns of protein expression in plasma of patients with pulmonary TB. The WGCNA R package was used to explore the correlation relationships between clusters of highly correlated proteins (colour modules) and specific sample traits. The batch effect was corrected in order to increase the analysis power with ComBat (40). Networks of highly interconnected proteins were constructed using a soft-thresholding power = 0.9 and modules were identified using a minimum module size of 15. Module significance was calculated as a measurement of the correlation between biological traits, such as disease or group, ethnicity and smoking status and the protein expression profiles. Visualisation tools available from this package were used to identify modules strongly correlated to biologically relevant covariates. Functional enrichment analysis was conducted using the option g:GOSt available in the tool g:Profiler (70). Only GO terms with an FDR adjusted p-value (cut-off 0.05) were considered. Significant GO
terms were summarised by removing redundant terms using the tool REVIGO (71). C-Net plots were generated using the R package cluster profiler (72).

For ELISA and luminex measurements, differences between groups were analysed by Kruskal-Wallis tests and using Dunn’s multiple comparison correction. Data was analysed on Prism 8 (GraphPad, San Diego, US). A p-value ≤ 0.05 was considered statistically significant. For the ROC analyses, the nonparametric method was used to estimate the standard error of the area under the curve and the confidence interval was set at 95%.

Study approval

All clinical studies were conducted according to declaration of Helsinki principles. All participants gave written informed consent prior to inclusion in any of the clinical studies here included. The South African cohort was recruited under the study approved by the University of Cape Town Research Ethics Committee (HREC, REF 516/2011). The prospective enrolment of participants in the Peruvian study was approved by the Universidad Peruana Cayetano Heredia Institutional Review Board (SIDISI 65314). The MIMIC study was funded by the Technology Strategy Board UK / Innovate UK and approved by the National Research Ethics Service Committee South Central (Ref 13 SC 0043). University of Southampton Ethics and Research Governance Online (ERGO) approval for transporting samples to the United Kingdom was granted (17758).

Author Contributions

DGB was involved in the study design; performed the optimisation of the proteomic method and conducted the plasma proteome profiling, analysed and integrated the data, the verification experiments and wrote the majority of the manuscript. CoW wrote the R scripts used to normalise raw peptides intensities, calculate protein expressions, and LIMMA analysis. NW recruited the South African cohort and provided clinical annotation. MT recruited the MIMIC cohort and provided clinical annotation. HS was involved in the experiments of verification using ELISA and luminex. CUG recruited the Peruvian clinical cohort and provided clinical annotation. AM and JA provided expertise in the plasma proteomic protocol. AV provided expert insight on the bioinformatic analysis and the R scripts for WGCNA and ComBat. MB was involved in the validation experiments. RW, SMJ and BM assisted with recruitment of patients to the cohorts. LT assisted in the luminex analysis. CrW was involved in the study design and provided expertise on the bioinformatic pipeline design. SG was involved in the study design and provided expertise and advice on the plasma proteomics method and contributed to the manuscript writing process. PE was involved with the study design, secured funding, and contributed to manuscript writing and edition.
Acknowledgements

This work was supported by Colciencias Scholarship 6171, Government of Colombia, and MRC Global Challenges Research Fund MR/P023754/1, Confidence in Concept MC_PC16059 and MR/R001065/1 and the Global-NAMRIP funding program. NFW was supported by Wellcome Trust (094000) NIHR, Starter Grant for Clinical Lecturers (Academy of Medical Sciences UK, Wellcome, Medical Research Council UK, British Heart Foundation, Arthritis Research UK, Royal College of Physicians, and Diabetes UK) and British Infection Association. CU-G received support from the Program for Advanced Research Capacities for AIDS in Peru (PARACAS) at Universidad Peruana Cayetano Heredia (D43TW00976301) from Fogarty International Center at the U.S. National Institute of Health (NIH). We are grateful to the Wellcome Centre for Infectious Diseases Research in Africa clinical research team and to the participants, staff, and patients of Ubuntu Clinic and the Western Cape Government: Health. PE is grateful of the support of the Southampton NIHR Biomedical Research Centre. The MIMIC study, MT and SM-J were supported by a grant from the UK Technology Strategy Board / Innovate UK (Grant no. 101556). MT was also supported by a Clinical Lectureship by the National Institute for Health Research UK. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (73) partner repository with the dataset identifier PXD020212. The plasma proteomic discovery pipeline is currently patent-pending.
References

44. De Groote MA, Sterling DG, Hraha T, Russell T, Green LS, Wall K, Kraemer S, Ostroff R, Janjic N, and Ochsner UA. Discovery and Validation of a Six-Marker Serum Protein

Fig. 1. Overview of the plasma proteomic discovery and validation strategy of potential TB biomarkers.

(A) Identification and quantification of plasma proteins was performed using a quantitative multidimensional protein identification approach which comprises a series of fractionation steps at both protein (denaturing HP-SEC) and peptide level (offline high pH C4 HPLC followed by online low pH C18 UPLC). Initial plasma prefractionation using HP-SEC produces 5 segments depending on the molecular size. Only segments 1 to 4 were included in this study since these include most of the protein contents. (B) Bioinformatic processing prioritised markers, which were then measured by ELISA or luminex in plasma or serum samples from two cohorts. Discovery and validation stages involved multiple ethnicities.

Fig. 2. In-depth quantitative plasma proteome profiling in TB.

(A) Violin plots with median and interquartile range show molecular weight frequency distributions of proteins quantified (peptide confidence ≤1%FDR) in each independent HP-SEC segment. The number of proteins with relative quantitative data in all profiled samples is indicated. Four plasma samples from TB patients, three healthy controls and one master pool were analysed. (B) Abundance of quantified proteins from all HP-SEC segments. Only proteins with circulating levels reported in the reference PaxDb1.4 protein abundance database or in the literature were annotated. Proteins considered as classical plasma proteins are indicated in red, tissue leakage proteins in green, proteins with signalling functions in purple and proteins associated to extracellular vesicles in yellow. Concentrations of detected proteins span 11 orders of magnitude. (C) Principal component analysis based on quantified proteins from all HP-SEC segments of eight profiled samples. iTRAQ tags and groups are indicated. Overall, TB patients were separated from healthy controls by the principal component PC1 and PC2, collectively explaining the 62% of total variance. The TB sample labelled with tag 121 clustered with the healthy control samples. The master pool, a combination of all samples, was located in the centre of the samples. (D) Log2 transformed relative protein expression heatmap of all proteins profiled in the four HP-SEC segments. Purple indicates TB patients and green healthy controls. Pearson correlation was used for clustering of proteins and Spearman for samples. Two clusters were defined based on the relative protein expression and GO analysis of these was performed using g:Profiler. Cyan: downregulated proteins; Magenta: upregulated proteins.

Fig. 3. Detailed profiling of segment 4 identifies a differential plasma proteome in TB infection.

Analyses of common quantified proteins (peptide confidence FDR ≤ 0.01) derived from HP-SEC segment 4 across three iTRAQ experiments studying 10 controls and 11 TB patients (n=426 proteins). (A) Volcano plot representation of plasma proteins differentially expressed in TB defined by LIMMA with FDR correction (q-value ≤0.05). Red indicates upregulated proteins and blue downregulated. Gene names of significantly regulated proteins with log2 fold change ≥|0.5| are shown. (B) WGCNA...
cluster dendrogram of quantified proteins into distinctive modules defined by dendogram branch cutting. Colour modules indicate protein clusters of highly interconnected proteins associated to the disease status. Correlation score and significance demonstrates that module turquoise is strongly correlated to TB status. (C) Gene ontology enrichment of proteins included in the module turquoise (n=189). Dots represent the top 20 enriched cellular component organisation terms. Dot colour indicates significance (p-value Benjamini-Hochberg adjusted) and size represents the number of differential proteins in the significant gene list associated with the GO term.

Fig. 4. Physiological changes in pulmonary TB are reflected in the plasma proteome.
Functional enrichment analysis of the biological processes was performed on the one hundred and eighty nine proteins strongly associated to the TB status and identified by WGCNA. Gene-concept network (c-net plot) depicts the linkages of proteins and the top 20 biological process terms enriched in the turquoise module. Up-regulated and down-regulated proteins were included. Green-to-red coding next to the network indicates the log2FC. Proteins in bold were selected for validation.

Fig. 5. Top candidate biomarkers for active TB link to multiple biological processes. Chord plot for plasma proteins strongly correlated to active TB and identified by combining outputs from WGCNA and LIMMA. This plot links these proteins via ribbons to their associated biological processes. Blue-to-red coding next to the proteins indicates the log2FC. Gene ontology enrichment for biological process was performed in g:Profiler and only significant terms (FDR q-value ≤ 0.05) are shown. Plot generated with the R package GOplots.

Fig. 6. Novel TB biomarkers validate in an independent UK cohort of mixed ethnicity.
Two novel TB biomarkers were significantly upregulated in TB infection measured by luminex or ELISA in serum from an independent UK-based cohort. (A) CFHR5 (Complement factor H related protein 5) is increased in TB, and also significantly increased in other respiratory diseases (ORDs). Four known TB potential markers were measured and were significantly elevated in TB: (B) LRG1 (Leucine-rich alpha-2-glycoprotein). (C) LBP (Lipopolysaccharide binding protein), (D) SAA1 (Serum amyloid A1), (E) CRP (C-reactive protein). (F) ILF2 (interleukin enhancer binding factor 2), a novel analyte from segment 3, was elevated in TB and ORDs. Box displays 25% and 75% percentiles with line showing median, and whiskers displaying minimum to maximum values. Differences were considered significant when p-value <0.05 and calculated from Kruskal-Wallis test and Dunn’s multiple comparison test. HC: Healthy controls (n=30), LTBI: Latent TB infection (n=30), PTBI: Pulmonary TB infection (n=32) and OR: Other respiratory diseases (n=26).

Fig. 7. Combination of five protein markers discriminates TB patients in a UK-based cohort.
Receiver operator characteristic (ROC) curves were generated using SPSS v.25, for individual proteins (CFHR5, LBP, SAA, CRP and ILF2) and after binary logistic regression for combined analytes. AUC was estimated under nonparametric assumption. TB was set as the positive test outcome and the test direction such that larger test result indicates a more positive test. ROC curve for TB infection vs. healthy controls shows good discrimination, with the multiplex panel most discriminatory (A), while the ROC curve for TB infection vs. ORD shows individual analytes are not differentiating, but a combined multiplex generates an AUC of 0.813 (B).

Fig. 8. CFHR5 validates as a new diagnostic marker of TB in HIV-coinfection, and multiplex analysis performs well against other respiratory conditions.

(A) CFHR5 was significantly upregulated during active TB infection in a previously reported South African cohort, in both HIV uninfected and HIV infected individuals. Three other potential TB markers were also elevated: (B) LBP, (C) SAA1 and CRP (previously reported). Box displays 25% and 75% percentiles with line showing median, and whiskers displaying minimum to maximum values. Differences were considered significant when p-value <0.05 and calculated from Kruskal-Wallis test and Dunn’s multiple comparison test. HC: Healthy controls (n=60), PTBI: Pulmonary TB infection (n=39) and ORD: Other respiratory diseases (n=22). HIV indicates HIV co-infection. HC-HIV (n=16), ATBI-HIV (n=53) and ORD-HIV (n=13)

Fig. 9. Combination of four protein markers discriminates TB patients with HIV-coinfection

Receiver operator characteristic (ROC) curves were generated using SPSS v.25, for individual proteins (CFHR5, LBP, SAA1 and CRP) and after binary logistic regression for combined analytes. ROC curve for TB infection vs. ORD in HIV uninfected individuals shows optimal performance from the combined host panel, with AUC of 0.888 (A). Analysis of TB infection vs. ORD in HIV co-infected individuals produced an AUC of 0.976 from the combined panel (B).
Fig. 1. Overview of the plasma proteomic discovery and validation strategy of potential TB biomarkers.

(A) Identification and quantification of plasma proteins was performed using a quantitative multidimensional protein identification approach which comprises a series of fractionation steps at both protein (denaturing HP-SEC) and peptide level (offline high pH C4 HPLC followed by online low pH C18 UPLC). Initial plasma prefractionation using HP-SEC produces 5 segments depending on the molecular size. Only segments 1 to 4 were included in this study since these include most of the protein contents. (B) Bioinformatic processing prioritised markers, which were then measured by ELISA or luminex in plasma or serum samples from two cohorts. Discovery and validation stages involved multiple ethnicities.
Fig. 2. In-depth quantitative plasma proteome profiling in TB.
(A) Violin plots with median and interquartile range show molecular weight frequency distributions of proteins quantified (peptide confidence ≤1%FDR) in each independent HP-SEC segment. The number of proteins with relative quantitative data in all profiled samples is indicated. Four plasma samples from TB patients, three healthy controls and one master pool were analysed. (B) Abundance of quantified proteins from all HP-SEC segments. Only proteins with circulating levels reported in the reference PaxDb1.4 protein abundance database or in the literature were annotated. Proteins considered as classical plasma proteins are indicated in red, tissue leakage proteins in green, proteins with signalling functions in purple and proteins associated to extracellular vesicles in yellow. Concentrations of detected proteins span 11 orders of magnitude. (C) Principal component analysis based on quantified proteins from all HP-SEC segments of eight profiled samples. iTRAQ tags and groups are indicated. Overall, TB patients were separated from healthy controls by the principal component PC1 and PC2, collectively explaining the 62% of total variance. The TB sample labelled with tag 121 clustered with the healthy control samples. The master pool, a combination of all samples, was located in the centre of the samples. (D) Log2 transformed relative protein expression heatmap of all proteins profiled in the four HP-SEC segments. Purple indicates TB patients and green healthy controls. Pearson correlation was used for clustering of proteins and Spearman for samples. Two clusters were defined based on the relative protein expression and GO analysis of these was performed using g:Profiler. Cyan: downregulated proteins; Magenta: upregulated proteins.
Fig. 3. Detailed profiling of segment 4 identifies a differential plasma proteome in TB infection. Analyses of common quantified proteins (peptide confidence FDR ≤ 0.01) derived from HP-SEC segment 4 across three iTRAQ experiments studying 10 controls and 11 TB patients (n = 426 proteins). (A) Volcano plot representation of plasma proteins differentially expressed in TB defined by LIMMA with FDR correction (q-value ≤0.05). Red indicates upregulated proteins and blue downregulated. Gene names of significantly regulated proteins with log2 fold change ≥|0.5| are shown. (B) WGCNA cluster dendrogram of quantified proteins into distinctive modules defined by dendogram branch cutting. Colour modules indicate protein clusters of highly interconnected proteins associated to the disease status. Correlation score and significance demonstrates that module turquoise is strongly correlated to TB status. (C) Gene ontology enrichment of proteins included in the module turquoise (n = 189). Dots represent the top 20 enriched cellular component organisation terms. Dot colour indicates significance (p-value Benjamini-Hochberg adjusted) and size represents the number of differential proteins in the significant gene list associated with the GO term.
Fig. 4. Physiological changes in pulmonary TB are reflected in the plasma proteome. Functional enrichment analysis of the biological processes was performed on the one hundred and eighty nine proteins strongly associated to the TB status and identified by WGCNA. Gene-concept network (c-net plot) depicts the linkages of proteins and the top 20 biological process terms enriched in the turquoise module. Up-regulated and down-regulated proteins were included. Green-to-red coding next to the network indicates the log2FC. Proteins in bold were selected for validation.
Fig. 5. Top candidate biomarkers for active TB link to multiple biological processes. Chord plot for plasma proteins strongly correlated to active TB and identified by combining outputs from WGCNA and LIMMA. This plot links these proteins via ribbons to their associated biological processes. Blue-to-red coding next to the proteins indicates the log2FC. Gene ontology enrichment for biological process was performed in g:Profiler and only significant terms (FDR q-value ≤ 0.05) are shown. Plot generated with the R package GOplots.
Fig. 6. Novel TB biomarkers validate in an independent UK cohort of mixed ethnicity.

Two novel TB biomarkers were significantly upregulated in TB infection measured by luminex or ELISA in serum from an independent UK-based cohort. (A) CFHR5 (Complement factor H related protein 5) is increased in TB, and also significantly increased in other respiratory diseases (ORDs). Four known TB potential markers were measured and were significantly elevated in TB: (B) LRG1 (Leucine-rich alpha-2-glycoprotein). (C) LBP (Lipopolysaccharide binding protein), (D) SAA1 (Serum amyloid A1), (E) CRP (C-reactive protein). (F) ILF2 (interleukin enhancer binding factor 2), a novel analyte from segment 3, was elevated in TB and ORDs. Box displays 25% and 75% percentiles with line showing median, and whiskers displaying minimum to maximum values. Differences were considered significant when \(p \)-value < 0.05 and calculated from Kruskal-Wallis test and Dunn’s multiple comparison test. HC: Healthy controls (n = 30), LTBI: Latent TB infection (n = 30), PTBI: Pulmonary TB infection (n = 32) and OR: Other respiratory diseases (n = 26).
Fig. 7. Combination of five protein markers discriminates TB patients in a UK-based cohort
Receiver operator characteristic (ROC) curves were generated using SPSS v.25, for individual proteins (CFHR5, LBP, SAA, CRP and ILF2) and after binary logistic regression for combined analytes. AUC was estimated under nonparametric assumption. TB was set as the positive test outcome and the test direction such that larger test result indicates a more positive test. ROC curve for TB infection vs. healthy controls shows good discrimination, with the multiplex panel most discriminatory (A), while the ROC curve for TB infection vs. ORD shows individual analytes are not differentiating, but a combined multiplex generates an AUC of 0.813 (B).
Fig. 8. CFHR5 validates as a new diagnostic marker of TB in HIV-coinfection, and multiplex analysis performs well against other respiratory conditions.

(A) CFHR5 was significantly upregulated during active TB infection in a previously reported South African cohort, in both HIV uninfected and HIV infected individuals. Three other potential TB markers were also elevated: (B) LBP, (C) SAA1 and CRP (previously reported). Box displays 25% and 75% percentiles with line showing median, and whiskers displaying minimum to maximum values. Differences were considered significant when p-value <0.05 and calculated from Kruskal-Wallis test and Dunn’s multiple comparison test. HC: Healthy controls (n = 60), PTBI: Pulmonary TB infection (n = 39) and ORD: Other respiratory diseases (n = 22). HIV indicates HIV co-infection. HC-HIV (n = 16), ATBI-HIV (n = 53) and ORD-HIV (n = 13)
Fig. 9. Combination of four protein markers discriminates TB patients with HIV-coinfection

Receiver operator characteristic (ROC) curves were generated using SPSS v.25, for individual proteins (CFHR5, LBP, SAA1 and CRP) and after binary logistic regression for combined analytes. ROC curve for TB infection vs. ORD in HIV uninfected individuals shows optimal performance from the combined host panel, with AUC of 0.888 (A). Analysis of TB infection vs. ORD in HIV co-infected individuals produced an AUC of 0.976 from the combined panel (B).