MetAP2 inhibition reduces food intake and body weight in a ciliopathy mouse model of obesity

Tana S Pottorf, …, James E Vath, Pamela V. Tran

Graphical abstract

Find the latest version:

https://jci.me/134278/pdf
MetAP2 inhibition reduces food intake and body weight in a ciliopathy mouse model of obesity

Tana S. Pottorf¹, Micaella P. Fagan², Bryan F. Burkey², David J. Cho¹, James E. Vath², Pamela V. Tran¹*

¹Dept. of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS

²Zafgen Inc., Boston, MA

* Correspondence should be addressed to:

Pamela V. Tran
Department of Anatomy and Cell Biology and
The Jared Grantham Kidney Institute
University of Kansas Medical Center
3901 Rainbow Blvd., MS #3038
Kansas City, KS 66160
Tel: 913-945-7325
Fax: 913-588-2710
E-mail: ptran@kumc.edu
Conflict of interest statement: MPF, BFB, and JEV were employees of Zafgen Inc., which provided funding via a sponsored research contract with KUMC. All studies were performed at KUMC.
Abstract

The ciliopathies Bardet-Biedl Syndrome and Alström Syndrome are genetically inherited pleiotropic disorders with primary clinical features of hyperphagia and obesity. Methionine aminopeptidase 2 inhibitors (MetAP2i) have been shown in preclinical and clinical studies to reduce food intake, body weight, and adiposity. Here we investigated the effects of MetAP2i administration in a mouse model of ciliopathy produced by conditional deletion of the Thm1 gene in adulthood. Thm1 conditional knock-out (cko) mice show decreased hypothalamic pro-opiomelanocortin expression as well as hyperphagia, obesity, metabolic disease and hepatic steatosis. In obese Thm1 cko mice, two-week administration of MetAP2i reduced daily food intake and reduced body weight 17.1% from baseline (vs. 5% reduction for vehicle). This was accompanied with decreased levels of blood glucose, insulin and leptin. Further, MetAP2i reduced gonadal adipose depots and adipocyte size and improved liver morphology. This is the first report of MetAP2i reducing hyperphagia and body weight, and ameliorating metabolic indices in a mouse model of ciliopathy. These results support further investigation of MetAP2 inhibition as a potential therapeutic strategy for ciliary-mediated forms of obesity.
Introduction

Obesity and associated insulin resistance increase risk for potentially fatal chronic diseases, including cardiovascular disease, type 2 diabetes, and non-alcoholic fatty liver disease. As obesity is pandemic and current treatments are insufficient (1), finding effective therapeutic strategies is critical to improving global health.

In preclinical and clinical studies, inhibition of methionine aminopeptidase 2 (MetAP2) has shown promising results. MetAP2 belongs to a family of metalloproteases, which cleaves the N-terminal methionine of nascent proteins. This post-translational modification induces subcellular localization changes and activation of the targeted protein (2). Fumagillin, a natural product of *Aspergillus fumigatus*, irreversibly inhibits MetAP2 (3). MetAP2 inhibition causes late G1 cell cycle arrest, and inhibits cell proliferation, as well as phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK½)(4-7). Early studies revealed anti-cancer and anti-fungal effects of fumagillin (8, 9). Subsequently, studies showed fumagillin and its analogs have anti-obesity effects, resulting in decreased body weight and adiposity and increased insulin sensitivity in high-fat diet-induced obese mice and rats (10, 11), as well as in genetic *ob/ob* mutant mice (12). Additionally, administration of the fumagillin derivative, beloranib, to individuals with non-genetic causes of obesity and to patients with Prader-Willi Syndrome, a genetic disease that causes insatiable appetite and obesity, resulted in reduced food intake and body weight (13, 14). The effectiveness of MetAP2i in various obesity models raises the possibility that inhibiting MetAP2 may counter other forms of obesity.

Ciliopathies are genetic disorders that arise from dysfunctional or absent cilia, and present numerous clinical features, including renal and hepatic fibrocystic disease, skeletal defects, infertility, hydrocephalus, mental disability, brain malformations, and central obesity (15).
Primary cilia are microtubule-based, mechanosensory organelles that protrude from the apical membrane of most mammalian cells and regulate signaling pathways. Primary cilia utilize intraflagellar transport (IFT) multi-protein complexes for bi-directional movement of protein cargo along the ciliary axoneme. The IFT-B complex mediates anterograde protein transport, while the IFT-A complex is required for retrograde transport and for ciliary import of membrane-associated and signaling proteins (16, 17). Another multi-protein complex, the BBSome, transports signaling molecules to the ciliary base, and acts like an adaptor between IFT complexes and protein cargo in the ciliary export of signaling molecules. Two ciliopathies, Alström Syndrome and Bardet-Biedl Syndrome (BBS), present obesity as a central clinical feature (18, 19). Additionally, polymorphisms in the BBS genes in the general population have been associated with obesity, and cilia length defects have been identified in adipose-derived mesenchymal stem cells from obese individuals, suggesting a more common relevance for cilia-related mechanisms (20-22).

Modifying mutations in the IFT-A gene, THM1 (TTC21B), have been reported in patients with Bardet Biedl Syndrome (23). We have shown that global deletion of Thm1 in adult mice causes decreased hypothalamic expression of appetite-controlling pro-opiomelanocortin (Pomc), hyperphagia, obesity and metabolic syndrome (24). Here we examine the effects of administering a novel fumagillin derivative to obese Thm1 conditional knock-out (cko) mice. Our results reveal reduced food intake, body weight and adipose tissue mass, as well as improved metabolic indices. These data indicate MetAP2 inhibition as a potential therapeutic strategy against obesity caused by genetic disorders of cilia.

Results

MetAP2i treatment decreases body weight, food intake and adiposity in Thm1 cko mice
To generate obese \textit{Thm1} cko mice, we induced deletion of \textit{Thm1} in male mice at five weeks of age and fed mutant mice and control littermates \textit{ad libitum} throughout the 13-week study (Figure S1A). Body weight was measured weekly from 0-10 weeks post-\textit{Thm1} deletion. At 10 weeks following gene deletion, \textit{Thm1} cko mice and control littermates weighed 42.2g ± 1.1g and 29.4g ± 0.7g, respectively, confirming the obese phenotype of the mutant mice (Figure S1B). At this timepoint (week 10 of the experiment), mice were housed individually and baseline measurements of food intake and body weight were obtained daily for one week. \textit{Thm1} cko mice showed an approximately 15% higher average daily food intake than control littermates, consistent with hyperphagia (Figure 1A). Following one week of solitary housing, \textit{Thm1} cko mice and control littermates weighed 41.17 ± 1.1g and 29.18 ± 0.7g, respectively (Figures S1C and S1D). We next administered daily subcutaneous injections of a novel MetAP2 inhibitor (MetAP2i), ZGN-1258 (Figure 1B), or vehicle for two weeks (week 11-13). In \textit{Thm1} cko mice, MetAP2i treatment reduced food intake relative to vehicle (Figure 1C). Additionally, in \textit{Thm1} cko mice, MetAP2i treatment caused a -17.1% body weight reduction compared to -5.0% for vehicle (Figure 1D; Figure S1E). These data show that MetAP2i counters the hyperphagia and increased body weight induced by deletion of \textit{Thm1}.

We next analyzed gonadal and peri-renal fat depots, which we have shown previously to be increased in obese \textit{Thm1} cko mice (24). As expected, vehicle-treated \textit{Thm1} cko mice showed increased gonadal and renal adipose tissue mass relative to control littermates (Figures 2A-D). In \textit{Thm1} cko mice, MetAP2i treatment reduced gonadal fat mass compared to vehicle-treatment (Figure 2A). Histology of gonadal fat pads showed an increase in gonadal adipocyte cell size in vehicle-treated \textit{Thm1} cko mice relative to control mice (Figures 2E-2F), consistent with previous findings (24). However, gonadal adipocyte cell size was reduced in MetAP2i-treated mutants.
These data show that MetAP2i treatment partially attenuates the increased gonadal adipose tissue mass and adipocyte size caused by deletion of Thm1.

MetAP2i treatment corrects the hyperinsulinemia, hyperleptinemia and hepatosteatosis in Thm1 cko mice

Following the two-week intervention, we measured metabolic parameters, including non-fasting blood glucose, serum insulin and leptin. In Thm1 cko mice, MetAP2i treatment reduced non-fasting blood glucose levels relative to vehicle treatment (Figure S2). As we observed previously (24), serum insulin levels were higher in vehicle-treated Thm1 cko mice than in vehicle-treated control littermates, but MetAP2i treatment in Thm1 cko mice decreased insulin levels to such an extent that levels were not significantly different from vehicle-treated control mice (Figure 3A). Similarly, serum leptin was elevated in vehicle-treated Thm1 cko mice relative to control littermates, but MetAP2i treatment in Thm1 cko mice reduced leptin levels to a degree that leptin levels were not significantly different from those of vehicle-treated control mice (Figure 3B). These data indicate that MetAP2i can correct these metabolic parameters.

Obese Thm1 cko mice also develop hepatic steatosis (24). To determine if MetAP2i treatment affected the liver, we examined the histology of livers of vehicle- and MetAP2i-treated mice. Vehicle-treated Thm1 cko mice had vacuoles in their livers, suggesting formation of lipid droplets (Figure 4; Figure S3). These vacuoles were not observed in control mice. Further, the vacuoles were reduced or absent in livers of MetAP2i-treated Thm1 cko mice, suggesting that the improved metabolism resulting from MetAP2i treatment extends to the liver.

Since many drugs are metabolized and excreted by the kidney, we examined the effects of MetAP2i in the kidney. Vehicle-treated Thm1 cko mice had similar kidney weights to those of
control mice (Figures S4A), but showed a slight decrease in KW/BW ratio (Figure S4B). This is likely due to the increased body weight of Thm1 cko mice, since the KW/BW ratio of MetAP2i-treated Thm1 cko mice was not significantly lower than that of control mice. Importantly, MetAP2i treatment of control or Thm1 cko mice did not affect kidney morphology relative to vehicle (Figure S4C), suggesting the MetAP2i treatment did not have nephrotoxic effects. We next examined primary cilia by immunostaining for the ciliary membrane protein, ARL13B, together with incubating with the lectin, Dolichos biflorus agglutinin (DBA) to label the collecting duct (Figure S4D). We observed previously that cilia are shortened in Thm1-deficient mice (24-26). Average cilia length in collecting ducts of vehicle-treated Thm1 cko mice was shorter than that of vehicle-treated control mice, but we noted a wide range of cilia lengths in the Thm1 cko collecting ducts and statistical significance was not achieved (Figure S4E). Unexpectedly, we observed that cilia lengths in collecting ducts of MetAP2i-treated mice were longer than in vehicle-treated mice.

Discussion

In this study, we provide the first evidence that MetAP2 inhibition reduces food intake and body weight and substantially improves metabolic parameters in a ciliary model of obesity. These data broaden the therapeutic applicability of MetAP2 inhibition, and demonstrate for the first time an effective pharmacological intervention in a ciliopathy rodent model of obesity.

Previously we showed that Thm1 deletion in adult mice results in decreased hypothalamic expression of the appetite controlling neuropeptide, Pomc, before the mutant mice gain significant body weight, suggesting reduced Pomc may drive the obese phenotype (24). Consistent with this notion, Pomc-null mice are obese (27). Additionally, in mice fed a high-fat diet, reduced
hypothalamic *Pomc* expression was found to be the earliest marker predicting obesity (28). The ability of MetAP2 inhibition to be effective in various models suggests that MetAP2 acts on a common pathway that is misregulated in all models leading to increased appetite and obesity. Since MetAP2i reduced food intake in *Thm1* cko mice, MetAP2i may have targets in neuronal cells either downstream of or countering the effects of reduced *Pomc* expression.

Recently, we have also found that hyperphagia in *Thm1* cko mice induces hepatic insulin resistance, which in turn, drives systemic insulin resistance prior to an obese phenotype (29). Thus, the corrected metabolic indices in MetAP2i-treated *Thm1* cko mice may also be due in part to the reduced food intake.

MetAP2i treatment also resulted in decreased adipocyte cell size, consistent with previous studies in rodent models of high fat diet-induced obesity (10, 11). Smaller, metabolically healthier adipocytes is associated with increased adipogenesis, yet whether MetAP2i directly affects adipogenesis is still unclear. In one study, addition of fumagillin to an in vitro pre-adipocyte differentiation assay promoted adipogenesis, but had minimal effects in an in vivo adipogenesis assay (30). In contrast, another study showed that a fumagillin derivative inhibited adipogenesis in an in vitro pre-adipocyte differentiation study, but fumagillin treatment of cells enhanced glucose uptake, indicative of metabolically healthier cells (31). Alternatively, a prevailing hypothesis is that the anti-angiogenic effects of fumagillin reduce adipose tissue mass, yet angiogenesis changes did not drive reduction of adipose tissue mass in mice (10). Thus, further studies are required to determine the mechanisms by which adipocyte size and adipose tissue mass are reduced by MetAP2i.

Interestingly, MetAP2i treatment did not affect control mice. This might be because the effectiveness of MetAP2 inhibitors depends on MetAP activity within a cell. Indeed, MetAP2
expression is either upregulated or has altered localization in tissues of obese mice (32). Further, a cancer study has demonstrated that a cell’s response to fumagillin depends on the expression of both MetAP1 and MetAP2, revealing MetAP2i treatment affects cell types differentially (33). In this light, querying the expression of MetAP1 and MetAP2 in various cell types, such as brain, liver, fat and endothelial cells, in obese and lean mice may be beneficial in determining the cells that will be most responsive to MetAP2i treatment.

Unexpectedly, we observed during the first week of individual housing prior to treatment that many of the control mice and all of the Thm1 cko mice showed reduced weight loss. Moreover, the mutant animals showed a greater percent weight reduction (-3.8%) than control animals (-0.8%; Figures S1B-S1D). This observation indicates caution is required when analyzing data that involve mice that are individually housed, which can generate stress and confound results. Importantly, MetAP2i treatment resulted in greater weight reduction than single housing alone.

Due to safety issues, Zafgen has recently discontinued the development of MetAP2 inhibitors (34). In patients with Prader-Willi Syndrome, the MetAP2 inhibitor, beloranib, was successful in lowering food intake and body weight, but also caused adverse events of venous thromboembolism (14). Prolonged exposure to MetAP2i by endothelial cells causes cell cycle arrest (35), and may initiate cell signaling pathways that promotes coagulation (36). Thus next generation MetAP2 inhibitors that are designed to have minimal exposure to endothelial cells may provide a solution (36). Alternatively, reversible MetAP2 inhibitors may also reduce these adverse events (37). A reversible MetAP2 inhibitor, M8891, is currently in Phase 1 clinical trial for cancer (38).

Our study indicates that there are plausible targets of MetAP2 inhibition that effectively reduce hyperphagia and body weight and substantially improve metabolic parameters in a
ciliopathy model. This substantiates the need for greater understanding of the biology of MetAP2 (39). Currently, agonists of the melanocortin 4 receptor, which is activated by the processed protein products of *Pomc*, are being tested in clinical trial to target obesity in patients with BBS and Alström Syndrome (40). Aside from this, a potential therapy for ciliopathy-induced obesity has not been demonstrated. The mechanism by which MetAP2 inhibition exerts its anti-obesity effects remain elusive. Intriguingly, our data suggest a potential connection between MetAP2 and cilia biology. While these observations were made in the kidney and are not directly relevant to the attenuated obesity and metabolic defects in MetAP2i-treated *Thm1* cko mice, future investigations between MetAP2 inhibition and ciliary dynamics in metabolically relevant cells may reveal potential mechanisms and therapeutic targets.

Methods

Generation of *Thm1* cko mice

Thm1 cko mice were maintained on a mixed FVB/C57BL/6J background and generated as described (24), using a *Thm1* null allele (called *aln*), a *Thm1* floxed allele that has LoxP sites flanking exon 4, and a tamoxifen-inducible *ROSA26-Cre*_{ERT} recombinase (Jackson Laboratories, Stock 004847), which is expressed globally. *Thm1^{fl/fl}* females were mated to *Thm1^{aln/+}; ROSA26-Cre_{ERT}* males to produce *Thm1^{fl/aln}; ROSA26-Cre_{ERT}* (*Thm1* cko mice) and *Thm1^{fl/+}; ROSA26-Cre_{ERT}* (control mice). Mice were genotyped via PCR using the following primers: 1) *alndiag-F* 5’-CGCTGATTAACCTATATGGTC-3’; 2) *alndiag-R* 5’-GCGTGGTAAATCGGAAGAC-3’; 3) *Thm1^{fl}-F* 5’-AAGTGTGTTGAAAAACCTGAATGGA-3’; 4) *Thm1^{fl}-R* 5’-GCACAGACTCCTGCTTCTCA-3’; 5) Cre-F 5’-GCGGTCTGGCGAATTAAGCTTAC-3’; 6)
Cre-R 5’-GTGAAACAGCATTGCTGTCACTT-3’. The aln PCR product was digested with AvaII, which cleaves the aln allele into 90-bp and 19-bp products. Cre recombinase expression was induced at 5 weeks of age by i.p. injection of 10mg tamoxifen/40g mouse weight. Both control and Thm1 cko mice received tamoxifen (MilliporeSigma T5648), which was suspended in corn oil (MilliporeSigma C8267) at 30 mg/ml. Only male mice were used and were maintained on a regular laboratory rodent chow diet (PicoLab 5053).

Administration of MetAP2i

Mice were fed *ad libitum* throughout the duration of the study. Body weight was measured weekly from 0-10 weeks post-tamoxifen injection to ascertain the obese phenotype in Thm1 cko mice. Beginning at 10 weeks post-tamoxifen injection, mice were housed individually, and food intake and body weight were measured daily until the end of the experiment. Subcutaneous injections of MetAP2i (ZGN-1258 - 0.3 mg/kg/day) or vehicle (5% mannitol) were administered daily from 11-13 weeks post-tamoxifen injection. This dose of ZGN-1258 reduced food intake and body weight in *ob/ob* mice, and these effects correlated with target engagement as measured by levels of the MetAP2-specific substrate, thioredoxin with intact N-terminal methionine (THX1-6), in brain and peripheral tissues (Micaella P. Fagan, unpublished observations).

Blood/serum and organ retrieval

At the end of the study, mice were weighed using a laboratory digital measuring scale. Tails were nicked to obtain tail blood to measure non-fasting blood glucose using Bayer Blood Glucose Contour Strips together with the Bayer Contour Blood Glucose Meter system. Following euthanization of mice, organs, including gonadal and peri-renal fat pads and kidneys were
dissected and weighed. Tissues were submerged in 10\% formalin at 4^{\circ}C for 3-7 days. Trunk blood was collected in a Microvette CB300z blood collection tube (Kent Scientific), and serum was isolated by centrifuging blood collection tubes for 6 minutes at 800xg at 4{\circ}C using a tabletop centrifuge (PrismR, C2500-R). Serum was stored at -80^{\circ}C until measurements of insulin and leptin were performed.

Histology

Following fixation in 10\% formalin at 4^{\circ}C for 3-7 days, tissues were dehydrated through an ethanol series, paraffin-embedded and sectioned at 7\mu m thicknesses. Sections were rehydrated and stained with hematoxylin and eosin using a standard protocol. Staining was viewed and imaged using a Nikon 80i microscope equipped with a Nikon DS-Fi1 camera.

Serum insulin and leptin measurements

Serum insulin and leptin levels were measured using Mouse Ultrasensitive Insulin ELISA and Mouse/Rat Leptin ELISA kits (ALPCO) according to manufacturer’s instructions.

Immunofluorescence

Immunofluorescence was performed as described (41). Sections were rehydrated. Heat antigen retrieval was performed in tri-sodium citrate solution, pH 6.0, using a steamer. Sections were rinsed in distilled water (10X), then blocked in 2\% BSA in PBS for 1 hour. Arl13B antibody (Proteintech) was diluted in blocking buffer (2\% BSA in PBS) and tissue sections were incubated with primary antibody at 4{\circ}C overnight. Sections were washed 3X in PBS, then incubated with *Dolichos biflorus agglutinin* (DBA; Vector Laboratories) for 1 hour at room temperature. Sections
were washed in PBS 3X, then incubated with Alexa Fluor 594, goat anti-rabbit secondary antibody (ThermoFisher) for 1 hour at room temperature. Following 3 washes in PBS, tissue sections were then mounted with Fluoromount G containing DAPI mounting media (Electron Microscopy Services). Immuno-labeled tissues were viewed and imaged using a Leica TCS SPE confocal microscope configured on a DM550 Q upright microscope.

Statistics
Graphpad Prism 8 was used to perform statistical analyses, which included two-tailed t-tests and one-way ANOVA followed by Tukey’s test.

Study Approval
All animal studies were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Kansas Medical Center, Kansas City.

Author Contributions
MPF, BFB, JEV and PVT designed research. TSP, DJC and PVT performed experiments. TSP, MPF, BFB, DJC, JEV and PVT analyzed data. TSP and PVT wrote the paper.

Acknowledgements
We thank members of the KUMC Department of Anatomy and Cell Biology and of the Kidney Institute for helpful discussions. We also thank the KUMC KIDDRC Core Services - Jing Huang of the Histology Core and Michelle Winter of the Animal Behavioral Core. Work performed by
the Cores is supported by the KUMC Smith Intellectual and Developmental Disabilities Research Center (NIH U54 HD 090216). PVT is supported by R01DK103033.
1. Roth J, Qiang X, Marban SL, Redelt H, and Lowell BC. The obesity pandemic: where have we been and where are we going? *Obes Res.* 2004;12 Suppl 2:88S-101S.

35. Zhang Y, Griffith EC, Sage J, Jacks T, and Liu JO. Cell cycle inhibition by the anti-
angiogenic agent TNP-470 is mediated by p53 and p21WAF1/CIP1. Proc Natl Acad Sci
Efficacy and Safety of the Novel Antidiabetic, Antiobesity MetAP2 Inhibitor ZGN-1061.
Structure-Based Optimization of Next-Generation Reversible Methionine
Methionine Aminopeptidase-2 (MetAP-2) inhibitor M8891, a Clinical Compound for the
effect of the melanocortin-4 receptor pathway in obesity: study design and methodology
41. Silva LM, Wang W, Allard BA, Pottorf TS, Jacobs DT, and Tran PV. Analysis of
Figure 1. MetAP2i treatment decreased food intake and body weight in Thm1 cko mice. A) Average daily food intake during week 10. Statistical significance was determined by two-tailed t-test. B) Chemical structure of ZGN-1258. Molecular formula: \(\text{C}_{24}\text{H}_{36}\text{F}_{2}\text{N}_{2}\text{O}_{5} \); Molecular weight: 470.56g. C) Average daily food intake from week 11-13. D) Percent body weight change from week 11-13. In C) and D), statistical significance was determined by one-way ANOVA followed by Tukey’s test. Each data point represents an individual mouse. Bars represent mean ± SD. *P<0.05; **P<0.005; ****P<0.00005
Figure 2. MetAP2i treatment decreased gonadal fat mass and adipocyte size in Thm1 cko mice.
A) Gonadal adipose mass B) Percent gonadal adipose mass/body weight C) Peri-renal adipose mass
D) Percent peri-renal adipose mass/body weight. Each data point represents an individual mouse. E)
H&E staining of gonadal adipose tissue. Scale bar – 50µm. F) Quantification of gonadal adipocyte
size from N=2 control mice/group and N=3 Thm1 cko mice/group. Each data point represents an
adipocyte. Bars represent mean ± SD. Statistical significance was determined by one-way ANOVA
followed by Tukey’s test. *P<0.05; **P<0.005; ***P<0.0005; ****P<0.00005
Figure 3. MetAP2i treatment improved metabolic parameters in *Thm1 cko* mice. A) Non-fasting levels of serum insulin and B) leptin. Each data point represents an individual mouse. Bars represent mean ± SD. Statistical significance was determined by one-way ANOVA followed by Tukey’s test.

*P<0.05; **P<0.005; ****P<0.00005
Figure 4. MetAP2i treatment improved liver morphology in *Thm1 cko* mice. A) Liver histology of vehicle and MetAP2i-treated control and *Thm1 cko* littermates. Scale bar - 100µm. Livers of mice from two additional litters are shown in Figure S3. Patches of circular white spaces were observed in vehicle-treated *Thm1 cko* mice, and not in MetAP2i-treated *Thm1 cko* mice. B) Quantification of hepatic steatosis/image from N=3 mice/group. Fields including patches of circular white spaces were imaged, and entire fields were quantified. Bars represent mean ± SD. Statistical significance was determined by one-way ANOVA followed by Tukey’s test. *P<0.05