Altered calcium-handling produces reentry-promoting action potential alternans in atrial fibrillation-remodeled hearts

Tao Liu, … , Congxin Huang, Stanley Nattel

Atrial fibrillation (AF) alters atrial-cardiomyocyte (ACM) Ca^{2+}-handling, promoting ectopic-beat formation. Here, we examined the effects of AF-associated remodeling on Ca^{2+}-related action-potential (AP) dynamics and consequences for AF-susceptibility. AF was maintained electrically (x1 week) in dogs by right-atrial (RA) tachypacing. ACMs isolated from AF-dogs showed increased Ca^{2+}-release refractoriness, spontaneous Ca^{2+}-spark frequency and cycle-length (CL) threshold for Ca^{2+} and APD alternans versus controls. Similarly, AF increased the in-situ CL-threshold for Ca^{2+}/APD-alternans and spatial dispersion in Ca^{2+}-release recovery kinetics, leading to spatially-discordant alternans associated with reentrant rotor formation and susceptibility to AF induction/maintenance. The clinically-available agent dantrolene reduced Ca^{2+}-leak and CL-threshold for Ca^{2+}/APD-alternans in both ACMs and AF-dog RA, while suppressing AF-susceptibility; caffeine increased Ca^{2+}-leak, CL-threshold for Ca^{2+}/APD-alternans in control-dog ACMs and RA-tissues. In vivo, the atrial repolarization alternans CL-threshold was increased in AF vs control, as was AF-vulnerability. Intravenous dantrolene restored repolarization alternans-threshold and reduced AF-vulnerability. Immunoblots showed significantly reduced expression of total and phosphorylated ryanodine-receptors and calsequestrin in AF, along with unchanged phospholamban/SERCA expression. Thus, in addition to promoting spontaneous ectopy, AF-induced Ca^{2+}-handling abnormalities favor AF-occurrence by enhancing vulnerability to repolarization-alternans, thereby promoting the initiation and maintenance of reentrant activity; the clinically-available compound dantrolene provides a lead-molecule to target this mechanism.
Altered calcium-handling produces reentry-promoting action potential
alternans in atrial fibrillation-remodeled hearts

Tao Liu, MD, PhD*1,2,3,4, Feng Xiong, PhD*1,5, Xiao-Yan Qi, PhD1, Jiening Xiao, PhD1,
Louis Villeneuve, MSc1, Issam Abu-Taha, PhD6, Dobromir Dobrev, MD6,
Congxin Huang, MD2,3,4, Stanley Nattel, MD1,5,6,7

*These authors contributed equally to the work and share first authorship.

1Department of Medicine, Montreal Heart Institute, Université de Montreal, Montreal, Quebec, Canada,
2Department of Cardiology, Renmin Hospital of Wuhan University, China,
3Cardiovascular Research Institute, Wuhan University, China,
4Hubei Key Laboratory of Cardiology, China,
5Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada,
6Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany,
7IHU LIRYC Institute, Bordeaux, France.

Short title: Ca2+ handling changes, alternans and reentry in AF

Funding: Funded by a Foundation Grant from the Canadian Institutes of Health Research (148401)
and an operating grant from the Heart and Stroke Foundation of Canada (16-00012708 to SN),
National Institutes of Health (R01-HL131517 and R01-HL136389 to DD), the DZHK (German Center for Cardiovascular Research, to DD), German Research Foundation (DFG, Do 769/4-1 to DD);
Major Technological Innovation Program of Hubei Province (2016ACA153 to CH);
Nature Science Foundation of China (81800337 to TL), Nature Science Foundation of Hubei
Province (2018CFB418 to TL) and China Scholarship Council-Government Scholarship Program (to TL).

Disclosures: The authors have declared that no conflict of interest exists.

Word count: 10541

Author for correspondence: Stanley Nattel, MD, Montreal Heart Institute, 5000 rue Bélanger, Montréal H1T1C8, Qc, Canada

Email: stanley.nattel@icm-mhi.org Phone: 514-376-3330

Keywords: electrophysiology; calcium cycling; arrhythmias; atrial fibrillation
Abstract

Atrial fibrillation (AF) alters atrial-cardiomyocyte (ACM) Ca\(^{2+}\)-handling, promoting ectopic-beat formation. Here, we examined the effects of AF-associated remodeling on Ca\(^{2+}\)-related action-potential (AP) dynamics and consequences for AF-susceptibility. AF was maintained electrically (x1 week) in dogs by right-atrial (RA) tachypacing. ACMs isolated from AF-dogs showed increased Ca\(^{2+}\)-release refractoriness, spontaneous Ca\(^{2+}\)-spark frequency and cycle-length (CL) threshold for Ca\(^{2+}\) and APD alternans versus controls. Similarly, AF increased the in-situ CL-threshold for Ca\(^{2+}\)/APD-altrens and spatial dispersion in Ca\(^{2+}\)-release recovery kinetics, leading to spatially-discordant alternans associated with reentrant rotor formation and susceptibility to AF induction/maintenance. The clinically-available agent dantrolene reduced Ca\(^{2+}\)-leak and CL-threshold for Ca\(^{2+}\)/APD-alternans in both ACMs and AF-dog RA, while suppressing AF-susceptibility; caffeine increased Ca\(^{2+}\)-leak, CL-threshold for Ca\(^{2+}\)/APD-alternans in control-dog ACMs and RA-tissues. In vivo, the atrial repolarization alternans CL-threshold was increased in AF vs control, as was AF-vulnerability. Intravenous dantrolene restored repolarization alternans-threshold and reduced AF-vulnerability. Immunoblots showed significantly reduced expression of total and phosphorylated ryanodine-receptors and calsequestrin in AF, along with unchanged phospholamban/SERCA expression. Thus, in addition to promoting spontaneous ectopy, AF-induced Ca\(^{2+}\)-handling abnormalities favor AF-occurrence by enhancing vulnerability to repolarization-altrens, thereby promoting the initiation and maintenance of reentrant activity; the clinically-available compound dantrolene provides a lead-molecule to target this mechanism.
Introduction

Atrial fibrillation (AF), the most common sustained cardiac arrhythmia in clinical practice, is associated with significant morbidity and mortality (1). AF-prevalence is age-dependent and will continue to rise as the population ages (1). Current therapeutic approaches for AF face limitations related to suboptimal efficacy and adverse-effect potential; new insights into underlying mechanisms might help to identify novel therapeutic strategies (2).

AF-associated remodeling has long been known to alter atrial Ca2+-handling (3). The rapid atrial rates associated with AF produce early cellular Ca2+-loading (4), followed by changes in cell Ca2+-handling that reduce the systolic Ca2+-transient while causing marked hypocontractility (3). One curious finding in such remodeled cardiomyocytes is that while the steady-state Ca2+-transient during sustained activity is very small, the initial transient after a period of inactivity is nearly normal (3). One possible explanation would be an alteration in refractoriness of the Ca2+-transient. Prolonged Ca2+-transient refractoriness (CTR) decreases Ca2+-transients with repeated activation, especially at rapid rates, and increases susceptibility to alternans-behavior (5).

Abnormalities in atrial RyR2-function are well-known to occur in AF and are associated with aberrant Ca2+-releases that cause delayed afterdepolarizations, triggered activity and spontaneous ectopic firing (6-9). In a mouse knockin model harboring a ‘leaky’ RyR2 (RyR2-R2474S), Xie et al. found increased susceptibility to atrial-cardiomyocyte action-potential (AP) alternans and atrial arrhythmias (10). A computational study suggested that disrupted Ca2+ release induced by impaired RyR2 inactivation might promote atrial alternans and arrhythmia-susceptibility in AF-patients (11); however, there has been no direct demonstration.
We speculated that abnormal Ca\(^{2+}\) handling associated with AF might increase CTR and that Ca\(^{2+}\)-handling disturbances might not only predispose to abnormal Ca\(^{2+}\)-releases causing spontaneous atrial ectopic activity, but also promote alternans behavior and susceptibility to reentry. We assessed this possibility in a dog model of electrically-maintained AF, with a combination of cellular Ca\(^{2+}\)-imaging, simultaneous tissue optical Ca\(^{2+}\)/transmembrane-potential (Vm) optical-mapping and in vivo electrophysiology. Our results suggest that AF-associated Ca\(^{2+}\)-handling disturbances may be central not only to the trigger for reentry in terms of ectopic-beat formation, but also to the substrate for reentry through enhanced susceptibility to AP-alternans.
Results

AF-related changes in CTR and Ca\(^{2+}\)-release restitution. Figure 1A shows representative recordings of cytosolic Ca\(^{2+}\)-transients (CaTs) at various S1-S2 coupling intervals from each group. AF prolonged CTR, which averaged 197±13 ms in AF atrial cardiomyocytes (ACMs) vs. 144±7 ms in CTL (P<0.01; Figure 1B). Figure 1C shows typical CaT restitution curves, fitted by monoexponential relationships. AF increased the steepness of CaT-restitution, decreasing the restitution time-constant (τ) from 591±18 ms in CTL ACMs to 315±13 ms (P<0.001; Figure 1D).

Changes in the threshold for cellular Ca\(^{2+}\)-transient alternans. It has long been recognized that changes in [Ca\(^{2+}\)]\(_i\) are central to the development of repolarization alternans (12). Figure 2A shows cellular CaT recordings at progressively higher frequencies. In each case, beat-to-beat CaT alternans eventually appeared. The threshold frequency for alternans in each ACM in each group are shown in Figure 2B. The CaT alternans frequency-threshold was significantly reduced, by 40%, in AF ACMs.

Changes in CaT and SR Ca\(^{2+}\) content. The results in Figures 1 and 2 show that Ca\(^{2+}\)-release dynamics are altered in AF ACMs. To relate these changes in dynamics to basic Ca\(^{2+}\)-handling properties, we determined the effects of AF on CaT properties and SR Ca\(^{2+}\)-content under fixed-rate pacing. Supplemental Figure 1A shows representative CaT recordings. Diastolic [Ca\(^{2+}\)]\(_i\) was increased, while CaT amplitude was significantly decreased, in AF ACMs (Supplemental Figure 1B). Changes in SR Ca\(^{2+}\)-content were assessed by simultaneously measuring caffeine-induced CaTs and NCX-currents. Supplemental Figure 2A shows representative recordings of caffeine-induced CaTs and NCX-currents from CTL and AF ACMs. AF significantly increased caffeine-induced NCX-current amplitude and SR Ca\(^{2+}\)-content (Supplemental Figures 2B and 2C) without affecting [Ca\(^{2+}\)]\(_i\) decay kinetics (Supplemental Figure 2D).
Changes in Spontaneous Ca\(^{2+}\)-spark and Spontaneous Ca\(^{2+}\)-transient events. To relate spontaneous RyR2-release behavior to changes in alternans, we quantified spontaneous Ca\(^{2+}\)-spark (SCaS) cellular events with confocal microscopy and Ca\(^{2+}\)-microfluometry. Figure 3A shows original 2-dimensional snapshots of Ca\(^{2+}\)-fluorescence from each group. Data for SCaS frequency, Ca\(^{2+}\) spark-mediated leak, Ca\(^{2+}\)-spark area, Ca\(^{2+}\)-spark amplitude, and Ca\(^{2+}\)-spark mass in all ACMs are compared in Figures 3B-3F. SCaS frequency and Ca\(^{2+}\)spark-mediated leak were significantly increased in AF ACMs versus CTLs (SCaS frequency: 6.5±0.4/1000 μm\(^2\)•s in AF vs. 1.2±0.1/1000 μm\(^2\)•s in CTL, Figure 3B; Ca\(^{2+}\) spark-mediated leak: 8.9±0.9 ΔF/F0/1000s in AF vs. 1.3±0.2 ΔF/F0/1000s in CTL, Figure 3C; P<0.001 for each). There was no significant difference in Ca\(^{2+}\) spark area (Figure 3D), Ca\(^{2+}\) spark amplitude (Figure 3E) or Ca\(^{2+}\) spark mass (Figure 3F) between CTL and AF ACMs. We also recorded spontaneous Ca\(^{2+}\) transient (SCaT) events after a 30-second period of pacing at 2 Hz. Compared with CTL ACMs, more SCaTs were seen in AF cells after the cessation of cell stimulation (6.3± 0.5 in AF vs. 1.7±0.3 in CTL, P<0.001; Supplemental Figure 3).

In situ alterations in atrial Ca\(^{2+}\)-handling dynamics and heterogeneity. To relate AF-induced single-ACM changes to cellular alterations in intact tissue, we performed optical [Ca\(^{2+}\)]-mapping in coronary-perfused canine atrial preparations. Figure 4A shows typical maps of S2/S1 CaT-ratio at 4 different S1S2-coupling intervals. The S2/S1 CaT-ratio was significantly decreased at all coupling intervals below 220 ms in AF atria compared to CTL (all P<0.001; Figure 4B), corresponding to the single-ACM results (Figure 1). However, in situ mapping revealed an additional effect of AF: a marked increase in regional variability with premature activation (Figure 4A). Spatial CaT inhomogeneity was quantified as the COV of S2/S1 CaT-ratio (COV-ratio).
COV-ratio was strikingly increased in AF atria, with significant changes at all coupling intervals below 240 ms compared to CTL ($P<0.001$; Figure 4C).

We further quantified the spatial variability in Ca$^{2+}$-release dynamics by comparing the restitution time-constants (τs) at multiple locations. Figure 5A shows representative CaT restitution curves at 4 atrial locations. The τs were smaller overall in AF atria than in CTL (Figure 5B), corresponding to AF-effects on single-ACM restitution (Figure 1C). In addition, AF substantially increased the spatial variability in restitution kinetics (Figure 5C).

Alterations in atrial CaT and APD alternans in atrial tissues. We evaluated the effects of AF on ACM alternans in situ with simultaneous optical mapping of CaT and APD alternans. Figures 6A and 6B illustrate respectively CaT and APD alternans thresholds in a CTL atrium. Recordings from single pixels are shown, along with maps at the left of the amplitude of beat-to-beat changes at each pixel in the recording field. Consistent with the single-ACM results, the median BCL-thresholds for CaT and APD alternans were significantly increased in AF versus CTL atria (median CaT alternans threshold in CTL 200 ms vs. 255 ms for AF; APD threshold: 180 ms in CTL vs. 225 ms for AF, $P<0.001$ for each; Figure 6C and 6D). Of note, in all cases and conditions, Ca$^{2+}$-alternans occurred at a longer cycle-length threshold (by ~20 ms) than APD-alternans (Supplemental Figure 4).

Effects of pharmacological modulation of cellular Ca$^{2+}$ release behavior. To explore the relationship between RyR2 leakiness, increased CTR and CaT alternans, we used dantrolene (10 μM) to suppress RyR2 leak (13). Dantrolene substantially reduced SCaS frequency, Ca$^{2+}$-spark mediated leak and SCaT events in AF CMs (Figure 3 and Supplemental Figure 3). The addition of dantrolene decreased CTR in atrial CMs from AF-dogs towards CTL values (Figure 1A and 1B: from 197 ± 13 ms in AF CMs to 150 ± 6 ms in dantrolene-treated (AF+DTL) CMs, $P<0.01$).
Dantrolene also moved the time-course of CaT restitution in AF-cells towards CTL values (Figure 1C and 1D). Similarly, dantrolene increased the CaT alternans threshold in atrial CMs from AF-dogs (Figure 2B), from a median of 3 Hz in AF to 4 Hz in AF+DTL ($P<0.001$). Correspondingly, dantrolene decreased the BCL threshold for CaT and APD alternans in perfused atria from AF-dogs (Figure 6C and 6D). Dantrolene also returned the kinetic properties of AF-remodeled atrial Ca$^{2+}$-restitution towards control values, increasing the S2/S1 CaT-ratio (Figure 4B) and the τ of calcium release restitution (Figure 5B), while decreased the COV-ratio (Figure 4C) and COV-τ (Figure 5C) in AF atria. Thus, reducing RyR2 leak with dantrolene reversed many of the abnormalities in CaT and APD kinetic properties associated with AF.

To determine whether we could reproduce AF-associated abnormalities in isolated CTL-dog CMs by enhancing RyR2-leak, we applied low-dose caffeine (100 μM), known to increase RyR2-leak and SCaS frequency (14). Consistent with expectations, caffeine significantly increased SCaS frequency, Ca$^{2+}$-spark mediated leak and SCaT events in CTL CMs (Figure 3 and Supplemental Figure 3). The addition of caffeine increased CTR in ACMs from CTL dogs towards AF values (Figure 1A and 1B: from 144±7 ms in CTL CMs to 193±10 ms in caffeine-treated CMs, $P<0.01$). Caffeine also shifted the time-course of [Ca$^{2+}$]$_i$ restitution towards AF values (Figure 1C and 1D), and reproduced AF-effects on cellular CaT alternans threshold (Figure 2). Correspondingly, caffeine increased the BCL threshold for CaT and APD alternans in perfused atria from CTL dogs (Figure 6C and 6D). Caffeine also mimicked AF-effects on restitution, decreasing the S2/S1 CaT-ratio (Figure 4B) and τ of Ca$^{2+}$-release restitution curves (Figure 5B), while increasing the COV-ratio (Figure 4C) and COV-τ (Figure 5C) in CTL atria.

Alternans behavior and AF. The results presented above show that AF-induced remodeling increases the susceptibility to CaT and APD alternans by altering CaT-dynamics and increasing
their heterogeneity. We then examined the relationship between alternans-occurrence/pattern and AF-induction. Representative recordings of the transition from spatially-concordant alternans (SCA) to spatially-discordant alternans (SDA) from an AF atrium are shown in Figure 7A. During dynamic pacing at threshold-BCL, CaT and APD alternans were initially spatially concordant across the atrial surface. With further decreases in BCL, SCA transitioned to SDA. Whenever SDA-CaT occurred, SDA-APD alternans also appeared (Figures 7B, 7C). The inducibility of SDA-CaT/APD was significantly increased in AF atria (occurring in 6/8 (75.0%) AF atria vs 0/6 (0%) of CTL atria, P<0.01); dantrolene reduced SDA-CaT/APD incidence in AF atria from 75% to 1/8 (12.5%); caffeine increased SDA-CaT/APD incidence in CTL atria from 0% to 4/6 (66.7%, P<0.01, Figure 7C). Upon the onset of SDA, the beat-to-beat behavior of discordant APD-alternans paralleled that of Ca2+-alternans, with a somewhat smaller amplitude (Supplemental Figure 5).

The induction of AF was closely linked to that of SDA, appearing after the development of SDA in all cases and in none in which SDA failed to develop. AF was induced in 75% (6/8) of AF-remodeled atria, versus 0% of 6 CTL-atria (P<0.01). AF-inducibility of AF-atria was suppressed by dantrolene (to 1/8, 12.5%, of AF-atria, P<0.01); in contrast, AF inducibility of CTL-atria was promoted by caffeine, occurring in 4/6, 66.7%, CTL-atria (P<0.05). AF-initiation was related to the development of functional block-associated reentry, as illustrated in Supplemental Figure 6. During discordant alternans associated with rapid pacing, the impulse blocked in a long-APD region, inducing reentry around the line of block and reentrant rotor formation.

Figure 8 illustrates the relationship between zones of SDA and reentrant activity. Figure 8A shows a RA pseudo-ECG from one optically-mapped preparation. The ΔAPD-map for complexes a and b (the penultimate paced complexes prior to AF-initiation) are shown in the upper left panel
of Figure 8B. There are substantial and discordant inter-beat APD-differences between regions in the mapped area. The subsequent panels show phase-maps corresponding to the time-points indicated on the pseudo-ECG. Dynamic pacing induced AF with consistent counterclockwise rotor-activity in the field of view, as shown by the PSs at the core-tip of the rotor at 8 snapshots of phase-maps within a rotational cycle. The location of the core-tip PS coincided closely with the location of nodal lines during SDA.

In vivo correlates. We then sought to determine whether the phenomena we studied at the cellular and isolated atrial level also occur in vivo. We recorded activation-recovery intervals (ARIs) in anesthetized CTL or AF-dogs, before and after dantrolene (2.5 mg/kg, IV). Figure 9A shows representative recordings of atrial ARI-alternans from a CTL-dog, as well as in an AF-dog before and after dantrolene administration. Compared with CTL-dogs, the median BCL threshold for ARI alternans was significantly increased in AF-dogs (Figure 9B: AF 210 ms vs. CTL 150 ms, \(P<0.001\)). Dantrolene administration significantly decreased the BCL threshold for ARI alternans in AF-dogs (to 170 ms, \(P<0.01\)). These results indicate that in vivo vulnerability to atrial APD alternans is increased in AF-dogs, and that this effect is attenuated by dantrolene.

Supplemental Figure 7 shows recordings of AF-induction by atrial burst-pacing in a CTL-dog, along with an AF-dog before and after dantrolene administration. Compared with CTL-dogs, the AF-vulnerability and AF-duration were markedly increased in AF-dogs (AF-vulnerability: 61±6% in AF vs. 5±3% in CTL, \(P<0.001\); AF-duration: 379±96 s in AF vs. 14±8 s in CTL, \(P<0.01\)). Dantrolene administration markedly decreased the AF-inducibility and AF-duration in AF-dogs (AF-inducibility: 28±7% in AF+DTL vs. 61±6% in AF, AF-duration: 61±23 s in AF+DTL vs. 379±96 s in AF; all \(P<0.01\)).
Alterations in Ca2+-handling proteins. To gain insights into the potential molecular basis of abnormalities of Ca2+-handling in AF-atria, we performed Western blots on a range of relevant proteins in isolated CMs (for original images, see Supplemental Figures 8A, 9A-B and 10A-B). AF significantly reduced the expression of total RyR2 (Supplemental Figure 8B), Ser2808-phosphorylated RyR2 (Supplemental Figure 8C) and the Ser2814-phosphorylated form (Supplemental Figure 8D). Phosphorylation-ratios (Ser2808 and Ser2814-P-RyR2 to total RyR2) were not significantly affected (Supplemental Figure 8E and 8F). PLB was not significantly affected by AF, including total PLB (Supplemental Figure 9C), the Ser16-phosphorylated form (Supplemental Figure 9D) and phosphorylation-ratios (Ser16 and Thr17-P-PLB divided by total PLB; Supplemental Figure 9F and 9G); nor was SERCA2a (Supplemental Figure 9H). AF significantly increased the expression of Thr17-phosphorylated PLB ($P<0.05$; Supplemental Figure 9E). FKBP12.6 expression was non-significantly reduced in AF (Supplemental Figure 10A), whereas CSQ showed a statistically-significant, about 30% decrease (Supplemental Figure 10B).
Discussion

In this study, we evaluated for the first time the relationships among Ca2+-mishandling induced by AF, the susceptibility to different forms of atrial alternans behavior in atrial tissues and intact hearts and AF-susceptibility. We relate findings in single cells to those in intact atria with the use of Ca2+-imaging and V\textsubscript{m}-analysis, and to in vivo consequences with studies in intact anesthetized dogs. Furthermore, the potential molecular changes underlying Ca2+-mishandling were studied with the use of immunoblots. Our results indicate that AF-remodeling enhances spontaneous single-cell Ca2+-release, prolongs the refractory period of the Ca2+-transient, increases the slope of the CaT-restitution curve and predisposes to CaT-altrenans. The AF-induced changes were mimicked in control-cells by increasing spontaneous Ca2+-release with low-dose caffeine, and suppressed in AF-cells by dantrolene. Correspondingly, in coronary-perfused preparations, AF-atria displayed increased Ca2+-handling heterogeneity and susceptibility to CaT and APD alternans, particularly SDA, which was associated with enhanced AF-inducibility accompanied by rotor formation at nodal lines. Dantrolene decreased Ca2+-handling heterogeneity and suppressed alternans behavior and AF-vulnerability in AF-atria. Finally, in vivo studies in dogs with AF-induced remodeling confirmed increased susceptibility to rate-dependent atrial repolarization alternans, along with enhanced AF-vulnerability and sustainability, which were attenuated by intravenous dantrolene administration.

Ca2+-handling changes in AF and potential arrhythmogenic role. A variety of Ca2+-handling abnormalities have been associated with AF, based both on studies of atrial CMs isolated from AF-patients (6-9,1#5) and experimental animals (16-18). Spontaneous diastolic Ca2+-release and RyR2 dysfunction are almost ubiquitous findings (6,9,16-19). Several studies show enhanced
delayed afterdepolarizations resulting from diastolic Ca2+-leak, associated with spontaneous ectopic activation-generation (8,9,16,17,19), although one report indicates Ca2+-silencing that protects against spontaneous Ca2+-release and activity (15).

Here, we confirmed an increase in spontaneous cellular Ca2+-release events in atrial cardiomyocytes from AF-dogs; moreover, this finding was associated with increased CTR, altered CaT-restitution and greater susceptibility to CaT-alternans. A causative role of spontaneous Ca2+-leak in altered CaT-kinetics was supported by the observation that low-dose caffeine reproduced the alterations caused by AF and that dantrolene, which suppresses Ca2+-leak (13,19), reversed the AF-induced changes. Further support for a role of Ca2+-mishandling in arrhythmogenesis was obtained by noting the relationship between CaT- and APD-alternans behavior in AF-dog atria, which caused SDA and associated rotor-formation along with greatly increased AF-susceptibility. Again, these changes were suppressed by dantrolene. Finally, we obtained evidence for similar phenomena in vivo. These results argue strongly that Ca2+-mishandling due to AF-remodeling plays a role in AF-promotion not only by favoring ectopic-impulse formation, but also by increasing the susceptibility to reentry.

Alternans behavior in clinical AF. A wide range of observations points to the importance of repolarization alternans in clinical AF (20). Since the first report of atrial monophasic APD alternans in a patient with atrial tachycardia (21), a number of studies have confirmed the occurrence and potential pathophysiological role of alternans in AF. Kim et al. showed increased APD-restitution slope in patients with AF versus controls (22). Narayan et al. demonstrated that APD-alternans occurred at much lower rates in AF-patients than controls, and disorganized to complex oscillations leading to AF as rate increased further (23). In the latter 2 studies, altered repolarization-kinetics occurred in patients with both persistent AF and paroxysmal AF.
Persistent-AF patients were cardioverted just before electrophysiological study, and were therefore quite analogous to our AF-dogs, which had electrically-maintained AF until the terminal experiment. While paroxysmal AF patients do not have AF-induced remodeling per se, they also show spontaneous cellular Ca\(^{2+}\)-release (9), which our findings suggest might explain their susceptibility to APD-alternans.

Recent computational modeling studies further support the role of Ca\(^{2+}\)-handling abnormalities in atrial alternans and clinical AF. Chang et al. used a human atrial tissue model incorporating AF-associated electrophysiological remodeling and performed a sensitivity analysis of ion-channel/transporter properties that might be involved in alternans behavior (11). They concluded that decreased RyR2-inactivation is the only parameter-variation that reproduces AF-associated APD-alternans behavior at relatively slow rates, and that RyR2-kinetics may play a critical role in governing proarrhythmic APD-alternans. In a subsequent study with a 3-dimensional human atrial model, they noted a critical role of Ca\(^{2+}\)-driven alternans, not only in the initiation of AF, but also in its persistence by causing unstable scroll waves that meander and break up to produce multiple daughter wavelets (24).

Spatially concordant and discordant alternans. Alternans can be spatially concordant or discordant (25, 26). SCA occurs when all the cells are alternating in phase, can be induced by rapid pacing in most normal hearts and is not necessarily arrhythmogenic. By contrast, SDA is more malignant and frequently observed in pathological states. The large refractory gradients over short distances resulting from SDA can produce conduction block and reentrant excitation that results in tachyarrhythmias and fibrillation (25-27). In our optical mapping study, SCA were induced in all atria, both CTL and AF, but SDA occurred in 0% of CTL-atria versus 75% of AF-atria. Furthermore, SDA immediately preceded AF-onset in all 6/6 AF-atria.
To gain insights into the much greater susceptibility of AF-atria to SDA-CaT, we studied the spatial heterogeneity of Ca\(^{2+}\)-handling. We found a clear increase in Ca\(^{2+}\)-handling heterogeneity in AF-atria, evidenced by increased COV-S1S2 ratios and COV-\(\tau\) of the Ca\(^{2+}\)-release restitution curve. The increased Ca\(^{2+}\)-handling heterogeneity was associated with a transformation from SCA-CaT to SDA-CaT upon abrupt BCL-reduction in AF-atria. Dantrolene decreased Ca\(^{2+}\)-handling heterogeneity and abrogated SDA-Ca\(^{2+}\) occurrence in AF-atria. By contrast, low-dose caffeine increased Ca\(^{2+}\)-handling heterogeneity and increased the inducibility of SDA-CaT in CTL atria. These findings implicate spatial heterogeneity in Ca\(^{2+}\)-handling remodeling in the occurrence of SDA-CaT.

The mechanism for SDA-APD is still poorly understood. In this study, we observed that SDA-CaT and SDA-APD always occurred concurrently in atrial tissue. Dantrolene and low dose caffeine administration, which affected the occurrence of SDA-CaT, abrogated and promoted the occurrence of SDA-APD, respectively. These results suggest that SDA-CaT is central to the development of SDA-APD.

Potential mechanisms underlying Ca\(^{2+}\)-handling abnormalities. Cellular Ca\(^{2+}\)-handling is a complex process involving a wide range of proteins involved in Ca\(^{2+}\)-transport, subcellular organelles and architecture, and regulatory processes. A number of molecular mechanisms have been implicated in CaT-alternans. The SR Ca\(^{2+}\)-transporter SERCA2a is responsible for cytosolic Ca\(^{2+}\)-uptake. SERCA2a-downregulation is a classical feature of cellular remodeling in heart failure, conspiring with increased RyR2-leak and phospholamban-hypophosphorylation to reduce ventricular CM Ca\(^{2+}\)-stores and cause hypocontractility (28). SERCA2a-downregulation is a principal correlate of repolarization alternans in heart failure (29), and alternans/arrhythmogenesis are suppressed by SERCA2a gene-transfer (30). However, SERCA2a-expression was not changed
in our AF-CMs (Supplemental Figure 9H). Consistent with our observation, SERCA2a overexpression and inhibition had little effect on alternans behavior in rat atrial CMs (31). Similarly, enhancing SERCA2a function with a gain-of-function phospholamban mutation or mildly suppressing SERCA2a function had minimal effects on Ca\(^{2+}\)-alternans in mouse hearts (32).

A number of recent studies suggest that enhanced RyR2 Ca\(^{2+}\)-leak can cause cellular CaT-alternans (10, 33). Local Ca\(^{2+}\)-sparks promote CaT-alternans by a spark-induced-spark mechanism in a computational model (34). Post-myocardial infarction dogs with enhanced RyR2-leak due to redox modulation of RyR2 similarly show susceptibility to CaT-alternans (35). These observations are consistent with our findings indicating a central role of AF-induced RyR2 Ca\(^{2+}\)-leak in CaT and APD alternans. Mathematical modeling of the complex determinants of Ca\(^{2+}\)-alternans does predict that, at least under certain conditions, increased Ca\(^{2+}\)-spark rate increasing the likelihood of alternans (33). On the other hand, there are extensive observations which suggest that, on the contrary, enhancing RyR2 function (e.g. with caffeine) reduces RyR2 refractoriness (thereby alleviating Ca\(^{2+}\)-alternans) whereas suppressing RyR2 Ca\(^{2+}\)-release promotes alternans. For example, Sun et al that a gain-of-function RyR2-mutation shortened Ca\(^{2+}\)-release refractoriness and suppressed alternans in the mouse ventricle (32). Interestingly, the mutation did not cause spontaneous Ca\(^{2+}\)-release events, unlike the effect of AF in our model. Similarly, Wang et al noted that sensitizing RyR2 with 200 µM caffeine suppressed alternans in the ventricles of isolated rabbit hearts (5). Alternans is clearly a complex and multifactorial phenomenon, but the refractoriness of RyR2 Ca\(^{2+}\)-release is clearly a key determinant of atrial Ca\(^{2+}\)-alternans (36) as we observed in the present study.

SR Ca\(^{2+}\) overload is well-recognized to promote diastolic Ca\(^{2+}\)-leak in cardiac myocytes (16). We observed increased SR Ca\(^{2+}\) content in AF-remodeled atria, likely resulting from 2 primary
mechanisms: (1) increased SERCA2a-mediated SR Ca\(^{2+}\)-uptake due to reduced phospholamban inhibition of SERCA2a caused by phospholamban hyperphosphorylation via CaMKII (Thr17-PLB); and (2) decreased SR Ca\(^{2+}\)-release caused by downregulated RyR2 expression (16,37).

In addition to the increased SR Ca\(^{2+}\)-loading, we found a significant reduction in CSQ expression in AF-remodeled atria. CSQ is the major Ca\(^{2+}\)-binding protein in the SR and acts as a Ca\(^{2+}\)-buffer regulating SR free Ca\(^{2+}\)-concentration (38). CSQ may also inhibit RyR2 Ca\(^{2+}\)-release independently of its buffering action. In heterozygous CSQ knockout mice, moderate reductions (about 25%) in CSQ-expression can increase SR Ca\(^{2+}\)-leak and arrhythmia susceptibility in the presence of β-adrenoceptor stimulation (39). In CSQ-knockout mice, spontaneous atrial Ca\(^{2+}\)-sparks are increased and atrial tachypacing induces AF/flutter, which can be suppressed by the RyR2-inhibitor R-propafenone (40). These findings suggest that the reduced CSQ-expression that we noted in AF CMs (Supplemental Figure 10) may at least in part explain the spontaneous RyR2-leak that we observed. Finally, we found a reduction in RyR2-expression in AF CMs (Supplemental Figure 8). Genetic suppression of RyR2-function prolongs Ca\(^{2+}\)-release refractoriness and promotes Ca\(^{2+}\)-release alternans in mouse hearts (41), suggesting that the RyR2-downregulation that we observed may also have contributed to the cellular phenotype.

Potential limitations. In this study, we noted that increased SR Ca\(^{2+}\)-leak as quantified by spontaneous Ca\(^{2+}\)-spark activity was associated with and paralleled prolonged CTR, which in turn was closely associated with Ca\(^{2+}\)- and APD-alternans. The refractory period of the Ca\(^{2+}\)-transient has multiple determinants, including L-type Ca\(^{2+}\)-current (\(I_{\text{CaL}}\)) properties, SR Ca\(^{2+}\) load and the intrinsic refractoriness of RyR2. \(I_{\text{CaL}}\) is known to be reduced in AF (42) and this change could have contributed to the alterations in CTR that we noted. In addition, caffeine and dantrolene would both be expected to alter SR Ca\(^{2+}\)-stores, which could also affect CTR. Changes in diffusional
distance between RyR2-clusters in association with changes in cellular ultrastructure and alterations in intracellular buffering could also have played a role. Much more detailed studies of beat-to-beat changes in the relationships among SR Ca\(^{2+}\)-stores, L-type Ca\(^{2+}\)-current and SR Ca\(^{2+}\)-release will be needed to determine the precise mechanisms underlying the changes in CTR that we observed with AF, caffeine and dantrolene.

We used a single animal model for this study, electrically-maintained AF for one week in the dog. We used this model in order to test a specific hypothesis: that AF-induced Ca\(^{2+}\)-handling remodeling can affect the recovery of the Ca\(^{2+}\)-transient and thereby affect alternans behavior and the susceptibility to reentry. However, we can’t know whether different durations of AF might have different effects. Furthermore, many animal models are available for the study of AF (43), and there is no a priori reason to think that similar changes occur in other models. In addition, the model does not consider the effects of structural modeling like atrial fibrosis, which plays a key role in AF pathophysiology (1, 44).

In the dual optical mapping studies, the probes for Ca\(^{2+}\)\(_i\) and V\(_m\) imaging share the same excitation band but have distinct emission bands. The fluorescence signals emitted by Rhod-2 AM and RH-237 dyes showed a shallow band of cross-talk in the emission spectra. Fluorescence signals were separated into different detectors using dichroic mirrors and emission filters. The two CCD cameras must be precisely aligned to ensure that CaT and Vm signals are indeed acquired from the same myocardial sites. We aligned the cameras with a grid reference placed in the field of view, and absolute precision of alignment cannot be ensured.

Novel findings and significance. The principal novel finding of this study is that AF-associated Ca\(^{2+}\)-handling abnormalities predispose not only to spontaneous atrial ectopic firing, as
previously noted (8,9), but also to the initiation and maintenance of atrial reentry. This observation places Ca\(^{2+}\)-handling disturbances squarely in the center of AF-promoting mechanisms, and supports efforts to design novel compounds that improve Ca\(^{2+}\)-handling to suppress AF (2,45,46).

There have been prior studies that demonstrated beneficial effects of dantrolene on cellular abnormalities in AF models. Avula et al (19) showed that sheep with myocardial infarction have spontaneous Ca\(^{2+}\)-release related atrial ectopic activity that initiates atrial reentry, and that dantrolene can suppress both ectopic firing and spontaneous AF-episodes in the sheep. Their study followed up on prior work demonstrating Ca\(^{2+}\)-driven atrial ectopy in a canine model of chronic atrial infarction (17). Hartmann et al (47) similarly showed that dantrolene suppresses Ca\(^{2+}\)-sparks and delayed afterdepolarizations in atrial cardiomyocytes from AF-patients. Our work differs from these studies in assessing the relationships between AF-induced changes in Ca\(^{2+}\)-handling, cellular alternans behavior and reentry-susceptibility, along with a detailed assessment of dantrolene effects on the substrate for reentry rather than just the trigger, subjects that have not been addressed before in the literature, to our knowledge.

Our study potentially explains a consistent observation that has been somewhat enigmatic. In mouse models with aberrant Ca\(^{2+}\)-handling and spontaneous Ca\(^{2+}\)-releases, AF-inducibility and persistence is consistently increased (18,40,48,49). Furthermore, suppression of abnormal Ca\(^{2+}\)-releases reduces susceptibility to AF-induction and the persistence of any AF induced. Arrhythmia inducibility and maintenance are generally related to the reentrant substrate, and it has been unclear why they should be altered by spontaneous Ca\(^{2+}\)-leak events. Our observation that spontaneous Ca\(^{2+}\)-release leads to repolarization alternans that facilitates reentrant AF induction and maintenance can potentially explain the prior findings. Furthermore, the observation that a clinically-available agent, dantrolene, suppresses the induction of SDA-CaT and SDA-APD in
association with reduced AF-vulnerability and AF-sustainability, points to the potential translational relevance of our findings to the search for new antiarrhythmic drug targets and agents for the treatment of this very common and problematic condition.
Methods

Canine AF Model. All animal-handling procedures followed the National Institutes of Health National Institutes of Health guidelines and were approved by the Montreal Heart Institute Animals Research Ethics Committee. Adult male mongrel dogs (20 to 35 kg) were obtained from LAKA (9319.2763 Québec Inc) assigned to control (CTL) and AF groups. After ketamine (5.3 mg/kg, IV)/diazepam (0.25 mg/kg, IV)/1.5% isoflurane anesthesia, AF-dogs underwent fluoroscopically-guided bipolar pacing-lead insertion into the right atrial (RA) appendage and connection to a pacemaker in the neck. After 24-h post-operative recovery, dogs were atrial-paced at 600 b.p.m to maintain fibrillatory atrial activity for 7 days. The CTL animals were handled identically to AF-dogs, but their pacemaker was not activated.

Cardiomyocyte Isolation. Atrial cardiomyocytes (ACMs) were isolated from the left atrium (LA) as described previously (16). Dogs were anaesthetized with intravenous morphine (2 mg/kg) and alpha-chloralose (120 mg/kg). After intra-atrial injection of heparin (10,000 U), the heart was quickly removed and placed in Tyrode’s solution containing (mM): NaCl 136, KCl 5.4, MgCl2 1, CaCl2 2, NaH2PO4 0.33, HEPES 5, and dextrose 10 (pH 7.35; NaOH). The left coronary artery was cannulated, and the LA tissue was dissected free and perfused with 1.8 mM Ca2+ containing Tyrode’s solution (37°C, 100% O2). Leaks from arterial branches were ligated and tissues were perfused with Ca2+-free Tyrode’s solution for 15 to 20 min, followed by Ca2+-free Tyrode’s solution containing collagenase (~0.45mg/mL, CLS II, Worthington, Freehold, NJ) plus 0.1% bovine serum albumin (Sigma, St. Louis, MO) for 1 h. Digested tissue was carefully minced and agitated, and LA cardiomyocytes harvested. After isolation, cells were kept in 0.2 mM Ca2+ containing Tyrode’s solution for Ca2+ imaging experiments (16).
Ca2+-**microfluorometry.** ACMs were incubated with indo-1-AM (5 μM) in 100 μM pluronic F-127 and 0.05% dimethyl sulfoxide for 15 to 20 min, then superfused with normal Tyrode’s solution (1.8 mM Ca2+) for 20 minutes to allow intracellular de-esterification. Ultraviolet light passing through a 340-nm interference filter was applied for excitation. Emitted light was detected by matched photomultiplier tubes. The fluorescence signal ratios (R\textsubscript{400/500}) were digitized and converted to [Ca2+]\textsubscript{i} with the formula

\[[\text{Ca}^{2+}]_i = K_d \times \beta \times (R_{400/500} - R_{\text{min}}) / (R_{\text{max}} - R_{400/500}) \]

(50).

Ca2+-transient refractoriness (CTR) was determined with an S\textsubscript{1}S\textsubscript{2} protocol (51). Ca2+ transients (CaTs) were induced with field stimulation at 1 Hz for 10 s (S\textsubscript{1}), followed by a single S\textsubscript{2} pulse. A series of S\textsubscript{1}S\textsubscript{2} pulse-protocols with progressively decreased S\textsubscript{1}S\textsubscript{2} coupling intervals (from 1000 to 100 ms) was applied while CaTs were continuously recorded. CTR was defined as the longest S\textsubscript{1}S\textsubscript{2} coupling intervals that failed to induce a CaT. The Ca2+ release restitution curves were constructed by plotting each the S2/S1 CaT-ratio against the corresponding S\textsubscript{1}S\textsubscript{2} coupling interval. The resulting data points were fitted with a single exponential function.

Caffeine-induced Ca2+ transients (CaTs) and corresponding sodium-calcium exchange (NCX) currents (I\textsubscript{NCX}) were simultaneously recorded in ACMs for quantification of sarcoplasmic reticulum (SR) Ca2+ content. Membrane potential was held at -80 mV. SR Ca2+ content was assessed by rapidly applying caffeine (10 mmol/l) after 1 minute of Ca2+ loading with continuous pacing. Caffeine-induced NCX-current was integrated to calculate SR Ca2+ content (8).

Confocal Ca2+-**imaging.** To assess spontaneous Ca2+-sparks (SCaSs), ACMs were incubated with 10 μM fluo-4 AM (Invitrogen) for 15 minutes. Subsequently, ACMs were placed on glass coverslips and superfused with 1.8 mM Ca2+-containing Tyrode’s solution for 10 minutes to allow intracellular de-esterification. Fluorescent images (16 bits, 10 milliseconds intervals, pixel size = 0.2 μm) were acquired with a Zeiss LSM 5 LIVE confocal fluorescence microscope (Carl Zeiss,
Oberkochen, Germany) equipped with an 63x/1.4 Plan-Apochromat oil objective. Fluo-4 AM was excited with a 488-nm argon-laser and emission signals were collected over 505 nm. Background-subtracted fluorescence-emission signals (F) were normalized to baseline fluorescence (F₀) by averaging 20 images. The changes in [Ca²⁺] were presented as ΔF/F₀ (where ΔF = F-F₀) (52). The SCaS frequency was calculated according to previously-described approaches (53). Briefly, a region mask was chosen to define the cell outline and prevent interference from the cell exterior. A non-linear partial differential equation-based method was combined with anisotropic diffusion and median filtering to improve signal-to-noise ratio. Fourth-order diffusion was applied to smooth small-gradient noisy areas, while the areas having larger gradients remain non-diffused (54). Median-filtering was applied subsequently to remove impulsive spikes generated by noise (55). The detection step used image segmentation to determine spark-regions. Morphology dilation was performed first and then connected components were labeled, followed by calculation of spark numbers and size. After finishing the preliminary calculation of sparks for each frame, the spark number was verified and counted. For spark centers that were in the region of a prior spark, the newly-detected sparks were considered a continuation of the event in the previous frame and assigned the same ID number. The variables analyzed included Ca²⁺ spark frequency, spark area, spark amplitude, spark mass and spark-mediated leak. The spark frequency was calculated as the total detected Ca²⁺ events over the recording time in the cell area of field of view. Spark amplitude was measured by the ratio of maximum F/F₀ at a spark event, indicating the highest relative fluorescence ratio. The spark area was measured at the time of maximum spark amplitude. The spark mass was calculated as spark amplitude × spark area × 0.33[change in fluorescence/initial fluorescence (ΔF/F₀·µm²)] and SR Ca²⁺ spark-mediated leak=spark mass ×
spark frequency ($\Delta F/F_0 s^{-1}$), using a similar method in Benoist D. et al’s method of Ca^{2+} spark detection (56).

Optical mapping of Vm and Ca^{2+}i. The right atrium (RA) was dissected free, and the right coronary artery was cannulated and perfused with Krebs solution (mM: 120 NaCl, 4 KCl, 1.2 MgSO$_4$ 0.7, 1.2 KH$_2$PO$_4$, 25 NaHCO$_3$, 5.5 glucose, 1.25 CaCl$_2$, 95% O$_2$/5% CO$_2$) at 20 mL/min and 37°C. Any leak from arterial branches was ligated with silk thread to maintain adequate perfusion. After 10 minutes of stabilization and electromechanical uncoupling with blebbistatin (15 µM) (57), the preparation was loaded with Rhod-2 AM (Invitrogen, Carlsbad, CA) and RH-237 (Sigma, St. Louis, MO) for simultaneous optical mapping of CaT and Vm. Subsequently, the tissue was excited with a laser (Thorlabs, Newton, NJ) at a wavelength of 520±45 nm. The bandpass filters for RH237 and Rhod-2 AM were 675±25 nm and 590±15 nm respectively (58,59). Fluorescence images were recorded with two charge-coupled device cameras (CardioCCD, Redshirt Imaging) focused on a 1.5×1.5-cm square region. A pair of bipolar electrodes was positioned on the superior right-atrial appendage, and the pacing stimuli were 2-ms pulse-widths, 1.5×threshold square-wave current.

Ca^{2+}/APD alternans was elicited during S1-S1 pacing with 15-s pulse trains separated by 30-s intervals to minimize pacing memory. Starting at 500 ms, the BCL was shortened to 300 ms in 100-ms intervals, to 180 ms in 20-ms intervals and then in 10-ms steps until Ca^{2+}/APD alternans was induced. APD_{80} was calculated as the time from maximal upstroke velocity (dF/dt$_{max}$) to 80% repolarization. CaT or APD alternans was quantified by subtracting the CaT-amplitude or APD_{80} for consecutive beats; alternans was defined as inter-beat CaT-amplitude or APD_{80} differences averaging >5% over 6 stimuli. The threshold-BCL was defined as the maximum BCL that induced Ca^{2+} or APD alternans.
To assess the transition from spatial concordant to disconcordant Ca2+/APD alternans, the BCL was decreased from the APD alternans threshold-BCL in 10-ms steps until AF was induced or 1:1 capture failed. AF was defined as a rapid (>400 b.p.m) irregular atrial rhythm lasting >1 second. If AF lasted more than 30s, a 5-minute rest period was allowed after AF termination. The phase of alternans was termed positive for long-short APD-sequences (or high-low CaT-sequences), and negative for short-long APD-sequences (or low-high CaT-sequences). To evaluate spatial characteristics, alternans was classified as spatially concordant alternans (SCA) or spatially discordant alternans (SDA). SCA was defined by at least 10% of the field of view displaying alternans that was entirely in-phase. SDA was defined when the field of view simultaneously displayed both positive and negative-phase alternans, with both positive and negative alternans occupying >10% of the surface area.

CTR was determined with an S1-S2 protocol (51). A single extrastimulus (S2) was delivered after 10 consecutive S1-stimuli at a BCL of 300 ms, and decremented in 10-ms steps until failure to elicit a Ca2+-transient (CaT). To quantify Ca2+-transient recovery from refractoriness, we evaluated the ratio of the S2-induced CaT amplitude to the S1-induced CaT amplitude (S2/S1 CaT-ratio) at S1S2-coupling intervals ranging from 300 to 170 ms for each condition (5). Maps of S2/S1 CaT-ratio were constructed at different S1S2-coupling interval for each condition. The Ca2+ release restitution curves were constructed by plotting S2/S1 CaT-ratio against the corresponding S\textsubscript{1}S\textsubscript{2} coupling interval. The resulting data points were fitted with a single exponential function. The Ca2+-release restitution curves were constructed in four locations. The decay time constant (\(\tau\)) of each Ca2+-release restitution curve was determined to calculating the average \(\tau\) of the restitution curve. The coefficients of variation (COVs, standard deviation [SD]/mean) of S2/S1
CaT-ratio (COV-ratio) and of the Ca2+-release restitution τ (COV-τ) was determined to evaluate the spatial dispersion of Ca2+-handling.

Phase-analysis was used to detect and follow phase singularities (PSs) (60,61). Hilbert transformation on $[-\pi, \pi]$ was performed first on the filtered signal from each pixel with the mean value during the recording period. The phase angle (θ) was calculated as the inverse tangent of the imaginary vs. real part of the transformation result. Singularity detection was performed by using the concept of topological charge, implemented as a series of convolution operations. PSs were identified by a topological charge of ± 1 (62). The algorithm was implemented as a line integral of differential phase maps around each pixel on an 8-pixel length enclosed path. The pixels around which the phase progresses through a complete cycle from $-\pi$ to $+\pi$ are of great interest (63). To avoid noise effects, the double-ring method was used (64).

In vivo electrophysiological study. Dogs were anesthetized with morphine (2 mg/kg, SC)/alpha-chloralose (120 mg/kg, IV) and ventilated, and a median sternotomy was performed. Bipolar electrograms (BEGs) were recorded with bipolar Teflon-coated stainless-steel electrodes sutured on the RA appendage (RAA). Activation recovery intervals (ARIs) were measured as indices of APD (65), from the steepest portion of the initial atrial depolarization deflection to the end of the subsequent atrial repolarization signal. ARI alternans was defined by interbeat differences $> 5\%$ over at least 6 successive beats, induced by a decremental S1-S1 pacing protocol (2-ms, 1.5-times diastolic-threshold current stimuli). Starting at 300 ms, the BCL was decremented every 15 seconds in 10-ms steps until alternans occurred. Each pacing-sequence was separated by at least 30 seconds to minimize the pacing memory. The BCL threshold for ARI alternans was defined as the maximal BCL that induced alternans. To assess AF-vulnerability, an S1-S2 pacing protocol was applied at 8 discrete sites: RAA, LA-appendage and right and left atrial
posterior walls, inferior walls, and Bachmann’s bundles. AF-vulnerability was defined as the percentage of atrial sites at which AF>1 s was reproducibly elicited by a single premature extrastimulus. To estimate mean AF duration in each dog, AF was induced with 1-s burst pacing applied 10 times (2-ms, 50 Hz, 4-times threshold-current stimuli) in the RAA. Sustained AF (> 20 min) was terminated by direct-current cardioversion and a 20-minute rest period was allowed for cardiac electrical recovery. If sustained AF was induced twice, no further AF induction was performed. After baseline data were obtained, dantrolene (Sigma, St. Louis, MO, USA; 2.5 mg/kg, IV), an inhibitor of diastolic Ca$^{2+}$ leak via RyR2 (13), was administered over 5 minutes and measurements were repeated 20 minutes later.

Western blot analysis. ACM-homogenates were prepared and protein concentrations determined with Amido-black 10B or Bio-Rad Protein Assay Dye. Equivalent amounts of protein were fractionated on SDS-polyacrylamide gels and transferred to polyvinylidene difluoride membranes. Western blotting was performed with primary antibodies as previously described (66). Immunoblotting was performed with primary antibodies to GAPDH (1:10000; 10R-G109a, Fitzgerald Industries International), calsequestrin (CSQ,1:2000; PA1-913, Thermo Science), calstabin2 (FKBP 12.6, 1:1000; AF4174, R&D Systems), sarcoplasmic reticulum (SR) Ca$^{2+}$-ATPase (SERCA2a, 1:5000; MAB2636, EMD Millipore), total phospholamban (1:10000; MA3-922, Thermofisher Scientific), Ser16- and Thr17-phosphorylated phospholamban (all 1:5000; A010-12 and A010-13, Badrilla), total ryanodine receptor 2 (RyR2, 1: 5000; MA3-916, Thermofisher Scientific), Ser2808(1:5000; ab59225, Abcam) and Ser2814 phosphorylated RyR2 (1:5000; A010-31, Badrilla). For some studies, custom antibodies were used for Ser2808 (1:1000) and Ser2814 (1:200) phosphorylated RyR2. These antibodies were generated by Invitrogen with peptide sequences CNRTRRI pS QTSQ-AMIDE and CQTSQV pS VDAAH-AMIDE
respectively, in rabbits. For studies with custom antibodies, FKBP 12.6 and calcsequestrin, the GAPDH antibody used was from HyTest (5G4 6C5; 1:20,000). Protein-bands were visualized with suitable near-infrared fluorophore dyes (IRDye, all 1:20,000, LI-COR Biosciences, Lincoln, NE) or enhanced chemiluminescence and imaged with an Odyssey Infrared Imaging System (LI-COR Biosciences) or Bio-Rad Quantity One.

Data analysis. Optical mapping, microfluometry, and confocal-microscope imaging data were processed with custom-made analysis software written in Matlab (version 7.11, MathWorks). Statistical analysis was performed with IBM SPSS (version 20) and Graphpad Prism 5 software.

All summary data are expressed as mean±SEM, unless otherwise specified. For variables that did not follow a normal distribution, we used the median and interquartile range (Q25-Q75) to represent central tendency and variability. A two-tailed *P*-value<0.05 is considered statistically significant. Continuous variables were compared with t-tests (when only 2 groups were compared) or ANOVA followed by Bonferroni post-hoc tests. Kolmogorov-Smirnov testing was used to check data normality. Data that did not satisfy criteria for normal distribution was compared with the nonparametric Kruskal-Wallis test followed by Dunn’s post-hoc test or by Wilcoxon for matched single-repeated measures data. The incidence of SDAs and AF were compared with 2×2 and 4×2 Chi-square tests.
Author contributions

TL designed study under supervision, conducted experiments with help of FX and XYQ, participated in data analysis and manuscript preparation; FXi conducted experiments with TL and XYQ, participated in data analysis and manuscript preparation, wrote all signal analysis software and ensured good functioning of optical mapping system; XYQ helped with conduct of all single cell experiments, as well as cell isolation; JX performed Western blot studies along with IAT; LV performed multiphoton confocal microscopy studies; IAT performed Western blot studies along with JX; DD supervised and funded Western blot studies and advised on protocol and manuscript; CH provided funding and supervision for TL; SN conceived initial idea, worked closely with all co-authors to provide supervision at all points of experimentation, data analysis and manuscript preparation, provided funding for all experiments except Western blots.

Acknowledgments

The authors thank Nathalie L’Heureux, Chantal St-Cyr, and Simone Olesch for excellent technical help and Jennifer Bacchi for assistance with manuscript preparation.
References

Figure Legends

Figure 1. A) Original recordings of cardiomyocyte Ca2+ transients (CaTs) at different S1S2 coupling intervals. The basic CaT and the CaT at the shortest S1S2 to respond (just beyond the refractory period) are shown in red. B) Ryanodine receptor (RyR2) refractory period for each condition. Each point represents the result from one cell. Horizontal lines show mean±SEM. n/N=cells/dogs per group. C) Typical examples of Ca2+-release restitution curves under each condition. D) Decay time constant (\(\tau\)) of the Ca2+-release restitution curve under each condition. Each point represents the result from a single cell. Horizontal lines show mean±SEM. n/N=15 cells from 5 dogs per group for all measures. (ANOVA followed by Bonferroni post-hoc test)

Figure 2. Cellular alternans in Ca2+-transients. A) Examples of signals at progressively greater frequencies without and with alternans recorded, with results from one cell in each group shown in a column. B) Threshold for cellular Ca2+-transient alternans under each condition. Each point represents the result from a single cell. Horizontal lines show medians and interquartile range. n/N=cells/dogs per group. CTL=control, AF=atrial fibrillation atrial cells, AF+DTL=dantrolene-treated AF-atrial cells, CTL+Caff=caffeine-treated CTL-atrial cells. n/N=15 cells from 5 dogs per group for all measures. (nonparametric Kruskal-Wallis test)

Figure 3. Cardiomyocyte spontaneous Ca2+-sparks on 2-dimensional confocal imaging. A) Fluorescent imaging of Ca2+, showing spontaneous Ca2+-sparks in each group. The yellow dashed ovals indicate sparks identified by our analysis software for each condition. B-F) Quantification of spontaneous Ca2+-spark frequency (B), Ca2+-spark area (C), Ca2+-spark amplitude (D), Ca2+-spark mass (E) and Ca2+-spark-mediated leak (F) under each condition. Each point represents the result from a single cell. Horizontal lines show mean±SEM. n/N=cells/dogs per group. CTL=control, AF=atrial fibrillation atrial cells, AF+DTL=dantrolene-treated AF-atrial cells,
CTL+Caff=caffeine-treated CTL-atrial cells. n/N=15 cells from 5 dogs per group for all measures. (ANOVA followed by Bonferroni post-hoc test)

Figure 4. Spatial dispersion of CaT restitution properties upon optical mapping in situ.

A) Maps of S2/S1 Ca\(^{2+}\)-transient (CaT) amplitude ratio (color scale at right) during progressive decreases in S1S2 coupling interval for each condition (left columns). Original recordings of the basic CaT (the first CaT) and the premature stimulation-induced CaT (the second CaT) from site 1 and 2 for each condition are shown in the right columns. B) Average S2/S1 CaT amplitude ratio for different S1S2 coupling intervals in each group. C) Average coefficient of variation (COV) of S2/S1 (COV-S2/S1) CaT amplitude ratio for different S1S2 coupling intervals in each group. Horizontal lines show mean±SD. N=6 for CTL and CTL+Caff, N=8 for AF and AF+DTL. CTL=control, CTL+Caff=CTL-atria after caffeine-treatment, AF=atrial fibrillation atria, AF+DTL=AF-atria after dantrolene. (repeated measures ANOVA followed by Bonferroni-corrected post-hoc tests)

Figure 5. Changes in rate and spatial dispersion of Ca\(^{2+}\)-release restitution upon optical mapping in situ. A) Examples of Ca\(^{2+}\)-transient (CaT) release restitution curves at 4 sites under each condition. The mean decay time constants (\(\tau_m\)s) of four locations and the covariance are shown in red text under each panel. B) Mean decay time constants (\(\tau\)s) of the CaT restitution curve under each condition (each point represents results from a single animal). C) Coefficient of variation (COV) of \(\tau\) of the CaT restitution curve under each condition. Horizontal lines show mean±SEM. N=6 for CTL and CTL+Caff, N=8 for AF and AF+DTL. CTL=control, CTL+Caff=CTL-atria after caffeine-treatment, AF=atrial fibrillation atria, AF+DTL=AF-atria after dantrolene-treatment. (ANOVA followed by Bonferroni post-hoc test) Cov= the covariance of the tau value, obtained by the ratio of standard deviation divided by the mean value of tau.
Figure 6. CaT and APD alternans thresholds in optically mapped preparations. A) Example of CaT alternans from a CTL-atrium. Top: ΔCaT amplitude-map (left) and a CaT recording from a single pixel (position shown with star on map) at 500 ms basic cycle length (BCL). Bottom: ΔCaT amplitude-map (left) and a CaT recording from a single pixel at 200 ms BCL. B) Example of APD alternans from the same CTL atrium. Top: ΔAPD-map (left) and AP-recording from a single pixel at 500 ms BCL; Bottom: ΔAPD-map (left) and AP-recording at 170 ms BCL. BCL threshold for CaT (C) and APD (D) alternans in each group; each point represents the result from a single atrium. Horizontal lines show median values and interquartile range for BCLs that induced CaT or APD alternans. N=6 for CTL and CTL+Caff, N=8 for AF and AF+DTL. CTL=control, CTL+Caff=CTL-atria after caffeine-treatment, AF=atrial fibrillation atria, AF+DTL=AF-atria after dantrolene. (Nonparametric Kruskal-Wallis test)

Figure 7. Relationship between spatially discordant alternans (SDA) of Ca\(^{2+}\)-transient (CaT: SDA-CaT) and APD (SDA-APD). A) Representative recordings of the transition from spatial concordant alternans (SCA) to SDA in CaT and APD from a single AF-atrium upon reducing BCL from 240 ms to 220 ms. SDA-CaT and SDA-APD occurred simultaneously. Top: CaT and corresponding AP-recordings at the same 2 sites. Bottom: ΔCaT-amplitude map and corresponding ΔAPD-map; positive and negative APD alternans phases are represented by red and blue, respectively. B and C) Inducibility of SDA-CaT (B) and SDA-APD (C) in each group. The vulnerability to SDA-Ca\(^{2+}\) and SDA-APD was significantly increased in AF-atria; dantrolene (DTL) suppressed SDA-Ca\(^{2+}\) and SDA-APD in AF atria. CTL=control, CTL+Caff=CTL-atria after caffeine-treatment, AF=atrial fibrillation atria, AF+DTL=AF-atria after dantrolene. N=6 for CTL and CTL+Caff; N=8 for AF and AF+DTL. (Chi-square test)
Figure 8. Initiation of AF in one optically-mapped AF atrium. A) Right atrium pseudo-ECG during AF initiated by pacing at 160 ms BCL. B) Upper left panel shows the ΔAPD-map for complexes corresponding to cycles a and b on the pseudo-ECG (the pen-ultimate paced complexes prior to AF-initiation). The subsequent panels show 8 snapshots of phase-maps corresponding to the time-points indicated in red points of the amplified pseudo-ECG episode. The positions of phase singularities (PSs) are indicated by surrounding them with white ovals. C) Inducibility of AF in each group. The vulnerability to AF was significantly increased in AF atria; dantrolene (DTL) reduced AF-vulnerability in AF-atria, whereas caffeine (Caff) enhanced AF-vulnerability in control (CTL)-atria. CTL=control, CTL+Caff=CTL-atria after caffeine-treatment, AF=atrial fibrillation atria, AF+DTL=AF-atria after dantrolene-treatment. N=6 for CTL and CTL+Caff; N=8 for AF and AF+DTL. (Chi-square test)

Figure 9. Activation-recovery interval (ARI) alternans in atrial electrograms in vivo. A) Examples of signals at various basic cycle lengths (BCLs) without and with ARI alternans recorded, with results shown for a control (CTL) dog (top) and an AF-dog before (middle) and after dantrolene (DTL) administration (bottom). B) BCL threshold for ARI alternans under each condition. Each point represents the result from a single atrium. Horizontal lines show median and interquartile range. N=5 for CTL and CTL+DTL, N=9 for AF and AF+DTL. CTL=control, CTL+DTL=CTL-dogs after dantrolene-treatment, AF=atrial fibrillation atria, AF+DTL=AF-dogs after dantrolene-treatment. (Nonparametric Kruskal-Wallis test)
Figure 1

A) Original recordings of cardiomyocyte Ca2+ transients (CaTs) at different S1S2 coupling intervals. The basic CaT and the CaT at the shortest S1S2 to respond (just beyond the refractory period) are shown in red. B) Ryanodine receptor (RyR2) refractory period for each condition. Each point represents the result from one cell. Horizontal lines show mean±SEM. n/N=cells/dogs per group. (ANOVA followed by Bonferroni post-hoc test) C) Typical examples of Ca2+-release restitution curves under each condition. D) Decay time constant (\(\tau\)) of the Ca2+-release restitution curve under each condition. Each point represents the result from a single cell. Horizontal lines show mean±SEM. n/N=cells/dogs per group. (ANOVA followed by Bonferroni post-hoc test)
Figure 2. Cellular alternans in Ca$^{2+}$-transients. A) Examples of signals at progressively greater frequencies without and with alternans recorded, with results from one cell in each group shown in a column. B) Threshold for cellular Ca$^{2+}$-transient alternans under each condition. Each point represents the result from a single cell. n/N=cells/dogs per group. Horizontal lines=median and interquartile range. CTL=control, AF=atrial fibrillation atrial cells, AF+DTL=dantrolene-treated AF-atrial cells, CTL+Caff=caffeine-treated CTL-atrial cells. (nonparametric Kurskal-Wallis test)
Figure 3. Cardiomyocyte spontaneous Ca\(^{2+}\)-sparks on 2-dimensional confocal imaging. A) Fluorescent imaging of Ca\(^{2+}\) showing spontaneous Ca\(^{2+}\)-sparks in each group. The yellow dashed ovals indicate sparks identified by our analysis software for each condition. B-F) Quantification of spontaneous Ca\(^{2+}\)-spark frequency (B), Ca\(^{2+}\)-spark area (C), Ca\(^{2+}\)-spark amplitude (D), Ca\(^{2+}\)-spark mass (E) and Ca\(^{2+}\)-spark-mediated leak (F) under each condition. Each point represents the result from a single cell. Horizontal lines show mean±SEM. n/N= cells/dogs per group. CTL= control, AF= atrial fibrillation atrial cells, AF+DTL= dantrolene-treated AF-atrial cells, CTL+Caff= caffeine-treated CTL-atrial cells. (ANOVA followed by Bonferroni post-hoc test)
Figure 4

Spatial dispersion of CaT restitution (optical mapping in situ). A) Maps of S2/S1 Ca\(^{2+}\)-transient (CaT) amplitude ratio (color scale at right) during progressive decreases in S1S2 coupling interval (left). Original recordings of basic CaT and the premature stimulus-induced CaT from sites 1 and 2 for each condition are shown at right. B) S2/S1 CaT amplitude ratio for different S1S2 coupling intervals in each group. N= dogs per group. C) Average coefficient of variation (COV) of S2/S1 (COV-S2/S1) CaT amplitude ratio for different S1S2 coupling intervals. Results are mean±SD. N=6 for CTL and CTL+Caff, N=8 for AF and AF+DTL. CTL=control, CTL+Caff=CTL-atria after caffeine-treatment, AF=atrial fibrillation atria, AF+DTL=AF-atria after dantrolene-treatment. (Repeated Measures ANOVA followed by Bonferroni-corrected post-hoc tests)
Figure 5. Changes in rate and spatial dispersion of Ca$^{2+}$-release restitution upon optical mapping in situ. A) Examples of Ca$^{2+}$-transient (CaT) restitution curves at 4 sites under each condition. The mean decay time constants (τ, ms) of four locations and the covariance are shown in red text under each panel. B) Mean decay time constants (τs) of the CaT restitution curve under each condition (each point represents results from a single animal). (ANOVA followed by Bonferroni post-hoc test) C) Coefficient of variation (COV) of τ of the CaT restitution curve under each condition. Horizontal lines show mean±SEM. N=6 for CTL and CTL+Caff, N=8 for AF and AF+DTL. CTL=control, CTL+Caff=CTL-atria after caffeine-treatment, AF=atrial fibrillation atria, AF+DTL=AF-atria after dantrolene-treatment. (ANVOA followed by Bonferroni post-hoc test) COV= the covariance of the tau value, obtained by the ratio of standard deviation divided by the mean value of tau.
Figure 6. CaT and APD alternans thresholds in optically mapped atria. A) Example of CaT alternans from a CTL-atrium. Top: ΔCaT amplitude-map (left) and a CaT recording from a single pixel (position by star) at 500 ms basic cycle length (BCL). Bottom: ΔCaT amplitude-map (left) and a CaT recording from a single pixel at 200 ms BCL. B) Example of APD alternans from the same CTL atrium. Top: ΔAPD-map (left) and AP-recording from a single pixel at 500 ms BCL; Bottom: ΔAPD-map (left) and AP-recording at 170 ms BCL. (C,D) BCL threshold for CaT (C) and APD (D) alternans in each group; each point represents the result from a single atrium. Horizontal lines show median and interquartile range for BCLs that induced CaT or APD alternans. N=6 for CTL and CTL+Caff, N=8 for AF and AF+DTL. CTL=control, CTL+Caff=CTL-atria after caffeine-treatment, AF=atrial fibrillation atria, AF+DTL=AF-atria after dantrolene. (nonparametric Kurskal-Wallis test)
Figure 7. Relationship between spatially discordant alternans (SDA) of Ca²⁺-transient (CaT: SDA-CaT) and APD (SDA-APD). A) Representative recordings of the transition from spatially concordant alternans (SCA) to SDA in CaT and APD from a single AF-atrium upon reducing BCL from 240 ms to 220 ms. SDA-CaT and SDA-APD occurred simultaneously. Top: CaT and corresponding AP-recordings at the same 2 sites. Bottom: ΔCaT-amplitude map and corresponding ΔAPD-map; positive and negative APD alternans phases are represented by red and blue, respectively. B and C) Inducibility of SDA-CaT (B) and SDA-APD (C) in each group. The vulnerability to SDA-Ca²⁺ and SDA-APD was significantly increased in AF-atria; dantrolene (DTL) suppressed SDA-Ca²⁺ and SDA-APD in AF atria. CTL=control, CTL+Caff=CTL-atria after caffeine-treatment, AF=atrial fibrillation atria, AF+DTL=AF-atria after dantrolene-treatment. (Chi-square test)
Figure 8. Initiation of AF in an optically-mapped AF atrium. A) Right atrial pseudo-ECG during AF initiated by pacing at 160 ms. B) Upper left: ΔAPD-map for complexes corresponding to cycles a and b on the pseudo-ECG (the pen-ultimate paced complexes prior to AF-initiation). Subsequent panels show 8 phase-maps corresponding to the time-points indicated in red points on the amplified pseudo-ECG (inset). The positions of phase singularities (PSs) are indicated by surrounding them with white ovals. C) Inducibility of AF in each group. The vulnerability to AF was significantly increased in AF atria; dantrolene (DTL) reduced AF-vulnerability in AF-atria, whereas caffeine (Caff) enhanced AF-vulnerability in control (CTL)-atria. CTL=control, CTL+Caff=CTL-atria after caffeine-treatment, AF=atrial fibrillation atria, AF+DTL=AF-atria after dantrolene-treatment. (Chi-square test)
Figure 9. Activation-recovery interval (ARI) alternans in atrial electrograms in vivo. A) Examples of signals at various basic cycle lengths (BCLs) without and with ARI alternans recorded, with results shown for a control (CTL) dog (top) and an AF-dog before (middle) and after dantrolene (DTL) administration (bottom). B) BCL threshold for ARI alternans under each condition. Each point represents the result from a single atrium. Horizontal lines show median and interquartile range. N=5 for CTL and CTL+DTL, N=9 for AF and AF+DTL. CTL=control, CTL+DTL=CTL-dogs after dantrolene-treatment, AF=atrial fibrillation atria, AF+DTL=AF-dogs after dantrolene-treatment. (nonparametric Kurskal-Wallis test)