In-Press Preview

Heart failure (HF) remains a grievous illness with poor prognosis even with optimal care. The apelin receptor (APJ) counteracts the pressor effect of angiotensin II, attenuates ischemic injury and has the potential to be a novel target to treat HF. Intravenous administration of apelin improves cardiac function acutely in HF patients. However, its short half-life restricts its use to infusion therapy. To identify a longer acting APJ agonist, we conducted a medicinal chemistry campaign leading to the discovery of potent small-molecule APJ agonists with comparable activity to apelin by mimicking the C-terminal portion of apelin-13. Acute infusion increased systolic function and reduced systemic vascular resistance in two rat models of impaired cardiac function. Similar results were obtained in an anesthetized but not a conscious canine HF model. Chronic oral dosing in a rat myocardial infarction model reduced myocardial collagen content and improved diastolic function to a similar extent as losartan, a RAS antagonist standard of care therapy, but lacked additivity with co-administration. Collectively, this work demonstrates the feasibility of developing clinical viable potent small molecule agonists that mimic the endogenous APJ ligand with more favorable drug-like properties and highlight potential limitations for APJ agonism for this indication.

Find the latest version:

https://jci.me/132898/pdf
Cardiovascular Response to Small Molecule APJ Activation

Authors: Brandon Ason¹‡*, Yinhong Chen¹‡, Qi Guo¹‡, Kimberly M. Hoagland²‡, Ray W. Chui², Mark Fielden², Weston Sutherland², Rhonda Chen¹, Ying Zhang¹, Shirley Mihardja¹, Xiaochuan Ma⁴, Xun Li⁴, Yaping Sun⁴, Dongming Liu¹, Khanh Nguyen¹, Jinghong Wang¹, Ning Li¹, Sridharan Rajamani¹, Yusheng Qu², BaoXi Gao², Andrea Boden², Vishnu Chintalgattu¹, Jim R. Turk², Joyce Chan¹, Liaoyuan A. Hu⁴, Paul Dransfield³, Jonathan Houze³, Jingman Wong¹, Ji Ma¹, Vatee Pattaropong³, Murielle M. Véniant², Hugo M. Vargas², Gayathri Swaminath¹ and Aarif Y. Khakoo¹

Affiliations:
¹Amgen Research, South San Francisco, CA, USA,
²Amgen Research, Thousand Oaks, CA, USA,
³Amgen Research, Cambridge, MA, USA,
⁴Amgen Research, Shanghai, China

*To whom correspondence should be addressed:

Brandon Ason, PhD
Amgen, Inc
1120 Veterans Blvd
South San Francisco, CA 94080
bason@amgen.com
650-244-2042

‡equal contribution

All authors are or were employed by Amgen.
Abstract: Heart failure (HF) remains a grievous illness with poor prognosis even with optimal care. The apelin receptor (APJ) counteracts the pressor effect of angiotensin II, attenuates ischemic injury and has the potential to be a novel target to treat HF. Intravenous administration of apelin improves cardiac function acutely in HF patients. However, its short half-life restricts its use to infusion therapy. To identify a longer acting APJ agonist, we conducted a medicinal chemistry campaign leading to the discovery of potent small-molecule APJ agonists with comparable activity to apelin by mimicking the C-terminal portion of apelin-13. Acute infusion increased systolic function and reduced systemic vascular resistance in two rat models of impaired cardiac function. Similar results were obtained in an anesthetized but not a conscious canine HF model. Chronic oral dosing in a rat myocardial infarction model reduced myocardial collagen content and improved diastolic function to a similar extent as losartan, a RAS antagonist standard of care therapy, but lacked additivity with co-administration. Collectively, this work demonstrates the feasibility of developing clinical viable potent small molecule agonists that mimic the endogenous APJ ligand with more favorable drug-like properties and highlight potential limitations for APJ agonism for this indication.
Introduction

Heart failure (HF) is a grievous disease caused by diverse forms of cardiac injury and carries a 4-year mortality rate of 60% in the developed world (1, 2). An index event, such as an acute myocardial infarction (MI), typically leads to changes at multiple levels of the cardiac neuraxis. While this response may be beneficial in the short-term, chronic activation of these stress signals leads to maladaptive cardiac structural remodeling and fuels continued disease progression. Current treatments are focused on antagonizing neurohormonal and hemodynamic stress (3-5). Despite current guideline-directed medical care, there are >500,000 new heart failure cases per year, with more people in the United States dying from heart disease or associated disorders than from all forms of cancer combined (6, 7). Given these grim statistics, additional therapies are needed to improve patient outcomes.

APJ (APLNR) is a G-protein coupled receptor that shares homology with the angiotensin II type 1 receptor (AT1R) (8). APJ is expressed in endothelial and smooth muscle cells of the coronary and pulmonary vasculature as well as in the myocardium (9-12). APJ expression is induced by hypoxia, hyperreninemia and hypoosmolality, all biologic derangements associated with heart failure (13-17). The apelin-APJ axis negatively regulates angiotensin II-AT1R action on vascular tone and fluid homeostasis and has been proposed to function as part of a well preserved evolutionary response to biological stress (18-24). Nonclinical and clinical studies show that APJ may be initially elevated in association with myocardial ischemia or heart failure but decreased in advanced left ventricular (LV) hypertrophy (9, 11, 23, 25-29).
Apelin and elabela are natural ligands of APJ, which are expressed as prepropeptides that are processed into biologically active isoforms (30, 31). Elabela is expressed as a 54 amino acid precursor that is processed into 32, 22 and 11 amino acid active isoforms, while apelin is expressed as a 77 amino acid precursor that is processed into 36, 17, 13 and 12 amino acid active isoforms (12, 32-34). All exhibit a short half-life that is thought to enable a rapid and transient response to homeostatic perturbations. Administration of both apelin and elabela improve cardiac function in nonclinical models (35-40). Additionally, the most potent biologically active form of apelin, pyr-apelin-13, improves cardiac function acutely in healthy volunteers as well as in heart failure patients suggesting that stimulation of the apelin/APJ axis could be beneficial in this disease setting (41, 42). However, the short half-life of apelin peptides greatly limits their therapeutic utility for patient with chronic heart failure. Here, we set out to develop potent and safe small molecule activators of APJ that have pharmacokinetic properties suitable for chronic administration. Furthermore, we sought to test the efficacy of these molecules in nonclinical models of cardiac disease to support their development for heart failure patients.

Results

APJ small molecule agonists AM-8123 and AMG 986 activate the APJ receptor in a manner similar to the endogenous ligands - A medicinal chemistry-based drug discovery approach was used to identify AM-8123 and AMG 986. In brief, a high-throughput screening campaign identified hits that were triaged through a cAMP assay that measured intracellular cAMP levels induced by APJ activation and a hGTPγS binding assay that measured Gα protein stimulated receptor activation. Screening hits were subsequently tested against AT1, β2AR as anti-targets to confirm selectivity for APJ.
The high-throughput screen resulted in 6 screening hits (3 of which were fragments with EC$_{50}$ > 5µM). From the 3 remaining hits; 6-chloro-2-(((4-(2-methoxyphenyl)-5-(thiophen-2-yl)-4H-1,2,4-triazol-3-yl)thio)methyl)imidazo[1,2-a]pyridine was selected as a validated hit as a series of close analogues exhibited tractable SAR. An SAR campaign was subsequently undertaken resulting in the discovery of several potent small-molecule agonists of APJ which will be the subject of upcoming journal articles. Of which, AM-8123 (1S,2S)-N-(4-(2,6-dimethoxyphenyl)-5-(5-methylpyridin-3-yl)-4H-1,2,4-triazol-3-yl)-1-isopropoxy-1-(5-methylpyrimidin-2-yl)propane-2-sulfonamide and the related compound AMG 986 (2S,3R)-N-(4-(2,6-dimethoxyphenyl)-5-(5-methyl-3-pyridinyl)-4H-1,2,4-triazol-3-yl)-3-(5-methyl-2-pyrimidinyl)-2-butanesulfonamide were selected for further study due to exhibiting displaying *in vitro* and *in vivo* properties that Amgen believe desirable in a clinical compound. These molecules were prepared as described (WO2016187308A1, Triazole agonists of the APJ receptor)(43).

Both AM-8123 and AMG 986 inhibited forskolin-stimulated cAMP production and promoted Go protein activation (Fig. 1A-C). Both molecules were slightly less potent in comparison to the endogenous ligand, pyr-apelin-13 in the cAMP assay (Log EC$_{50}$ AM-8123: -9.44 ± 0.04, AMG 986: -9.64 ± 0.03, pyr-apelin-13: -9.93 ± 0.03), while they were more potent relative to pyr-apelin-13 in the GTP$_{\gamma}$S assay (Log EC$_{50}$ AM-8123: -8.95 ± 0.05, AMG 986: -9.54 ± 0.03, pyr-apelin-13: -8.10 ± 0.05). The maximum level of activation, Emax, for AM-8123 and AMG 986 were equal to (Fig. 1B) or greater than pyr-apelin-13 (Fig. 1C). Together, these data indicate that the small molecules are full APJ agonists that exhibit slight differences in potency relative to one another and may be more potent when compared to the endogenous ligand pyr-apelin-13.
APJ activation results in β-arrestin recruitment and receptor internalization (44, 45). We compared the potency of AM-8123, AMG 986 and pyr-apelin-13 to recruit β-arrestin using the PathHunter arrestin assay. In this assay, both AM-8123 and AMG 986 exhibited a modest increase in potency relative to pyr-apelin-13 (Log EC50 AM-8123: -9.45 ± 0.08, AMG 986: -9.61 ± 0.13, pyr-apelin-13: -8.96 ± 0.03, Fig. 1D). APJ internalization following receptor activation was additionally assessed by the PathHunter internalization assay. In U2OS cells that overexpress hAPJ, both AM-8123 and AMG 986 also resulted in receptor internalization with greater potency relative to pyr-apelin-13 (Log EC50 AM-8123: -9.4 ± 0.03, AMG 986: -9.59 ± 0.03, pyr-apelin-13: -7.80 ± 0.04, Fig. 1E).

Using an alternative method, we additionally monitored AM-8123 induced β-arrestin recruitment and receptor internalization using confocal microscopy. U2OS cells stably expressing C-terminal GFP-tagged β-arrestin were transiently transfected with HA-tagged receptors using the BacMam system. β-arrestin and APJ receptor were visualized by GFP (green) and Alexa-594 conjugated anti-HA antibody (red), respectively (Fig. S1). In APJ expressing cells, treatment with both 100 nM AM-8123 and 1 uM apelin-13 caused a rapid β-arrestin translocation from cytoplasm to plasma membrane. The APJ/β-arrestin complexes formed and then internalized into cytosol to form intracellular vesicles within 30 minutes (Fig. S1). Collectively, these data suggest that both small molecules are functionally equivalent. They are full agonists that activate APJ with potentially greater potency relative to the endogenous ligand and are capable of triggering β-arrestin recruitment and receptor internalization.
Molecular modeling of wild type APJ in complex with either apelin-13 or AM-8123 -

Molecular modeling was subsequently used to determine whether the small molecule agonists
share the same binding site as the endogenous ligand apelin-13. The initial model of APJ (19-330)
in complex with apelin-13 was built via homology modeling in Discovery Studio (Dassault
Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 2017, San Diego: Dassault
Systèmes, 2016.), with the previously published APJ-AMG3054 structure (PDB ID 5VBL) as the
template (46). The ICL3 loop region was optimized with Prime Refine Loops in Schrödinger
(Schrödinger Release 2017-3: Prime, Schrödinger, LLC, New York, NY, 2017.). The models of
APJ in complex with apelin-13 or AM-8123 were subsequently used to compare their binding
modes (Fig. 2). The results suggest that AM-8123 can mimic the C-terminal part of apelin-13
through the following interactions: (1) the methylpyrimidine ring inserts into the sub-pocket
composed of K2686.55, Y2716.58, M2726.59, M2887.32 and F2917.35, as the sidechain of apelin-13
Met-11; (2) the sulfonamide and triazole group forms interactions with R1684.64 and K2686.55,
mimicking the carbonyl group of apelin-13 Met-11 and the carboxyl group of Phe-13; (3) the
dimethoxyphenyl group mimics the phenyl ring of apelin-13 Phe-13, which interacts with Y351.39,
W852.60, Y882.63, F2917.35, T2957.39 and Y2997.43. With all the above elements similar to apelin-
13, AM-8123 can be considered as an apelin-13 C-terminal mimetic ligand. Moreover, it has some
unique elements and the major one is its methylpyridine group (4) that inserts deeper into the
orthosteric site than apelin-13, forming interactions with the sub-pocket composed of F782.53,
I1093.32, F1103.33, M1133.36, Y2646.51, T2957.39 and Y2997.43. Taken together, these interactions
may explain why AM-8123 is a potent agonist of APJ even though it is smaller than the
endogenous peptide ligand. Given the structural similarities between AM-8123 and AMG 986,
we can infer that these interactions exist for both of these functionally equivalent molecules.
We next determined if mutations in APJ influence binding of the APJ small molecule agonists by saturation binding of 3H AM-8123. AM-8123 bound the native hAPJ receptor with low nanomolar affinity consistent with the potency observed in the *in vitro* activity assays (Table 1). Several mutations (W85A, F110A, Y185A, K268A, Y271A, M288A, and F291A) impaired binding of AM-8123 (Table 1) indicating that interactions with transmembrane helix 2, 3, 6, and 7 as well as extracellular loop 2, which were predicted to interact with AM-8123 based on the molecular modeling are important for proper formation of the small molecule binding pocket.

AM-8123 and AMG 986 exhibit improved pharmacokinetic profile relative to pyr-apelin-13

To support chronic oral dosing of AM-8123 and AMG 986 in nonclinical studies and clinically, the pharmacokinetic properties of both were evaluated in rat and dog by both the IV (0.5 mg/kg) and oral (2 mg/kg) routes of administration (Table 2). Mean compartmental PK parameters indicated that volume of distribution (Vss) was low in dogs (0.33 and 0.94 L/kg for AM-8123 and AMG 986 respectively) and above total body water in rats (0.81 and 0.6 L/kg for AM-8123 and AMG 986 respectively). Clearance was low in dog and moderate in rat for both AM-8123 and AMG 986 following a single IV dose. The terminal half-life after IV dosing was 3.2 and 2.2 hrs and 2.39 and 4.2 hrs in rats and dogs for AM-8123 and AMG 986, respectively. Both AM-8123 and AMG 986 exhibited appreciably greater oral bioavailability in rats and dogs relative to pyr-apelin-13. The drug-like properties of AM-8123 and AMG 986 dramatically improve upon the short half-life of pyr-apelin-13 and were predicted to provide adequate exposures in humans with once daily oral dosing.
Acute intravenous infusion of the APJ small molecule agonist AMG 986 altered cardiac hemodynamics and increased cardiac reserve during dobutamine challenge in a rat model of impaired metabolic function - To assess the impact of APJ activation on cardiac function, AMG 986 was infused in ZSF1 obese rats, a model of diastolic dysfunction driven by abnormalities in metabolism, endothelial dysfunction and hypertension. A two compartmental model and PK parameters from an IV bolus study were used to select a dose that would result in a total plasma concentration within the low uM range (\(V_1=0.228511 \text{ L/kg, } k_{10}=3.400481, k_{12}=0.770357, k_{21}=1.719881\)). AMG 986 was infused at 1 mg/kg.min for 10 minutes followed by a 5 minute co-infusion with dobutamine (12 ug/kg.min) to measure cardiac reserve (Fig. 3A). Hemodynamic assessments were done invasively using a pressure-volume conductance catheter to give a direct and continuous measure of cardiac function. Acute administration of AMG 986 resulted in an unbound plasma exposure of 0.87 uM and a modest but significant increase in stroke volume (SV), ejection fraction (EF), and heart rate (HR) while mean arterial pressure (MAP) remained unchanged when compared to vehicle (Fig. 3B-C, Fig. S2). Additionally, AMG 986 decreased the MAP/CO ratio, which is used to approximate systemic vascular resistance (SVR), suggesting a decrease in cardiac afterload (Fig. 3D). AMG 986 co-infusion with dobutamine led to a more robust increase in SV without significantly altering MAP or HR relative to dobutamine alone providing evidence that AMG 986 enhanced cardiac reserve following dobutamine challenge in a metabolic model of diastolic dysfunction.

Acute intravenous infusion of the APJ small molecule agonist AM-8123 improves cardiac function in a rat MI model - Since the small molecule agonist primarily impacted systolic function in ZSF1 obese rats, a model in which systolic function is largely preserved, we next assessed how APJ receptor activation improves systolic function in rat model of acute post-MI
systolic heart failure. *In vivo* cardiovascular hemodynamics were collected invasively 6-8 weeks post-MI using a pressure-volume conductance catheter from animals infused with AM-8123. Animals were enrolled on study if an infarct, induced by LAD ligation, resulted in an EF ≤ 45% as measured by echocardiography. Animals meeting these criteria were randomly assigned to one of the five dose groups (Fig. S3A). Acute infusion of AM-8123 decreased MAP/CO, suggesting a decrease in SVR or cardiac afterload (Fig. S3B). Additionally, AM-8123 infusion resulted in an increase in EF, SV, and dP/dt max at sub-micromolar unbound plasma concentrations with minimal change in HR indicating that acute infusion of AM-8123 is associated with an improvement in several markers of cardiac function (Fig. S3C-H). A transient drop in MAP (-12% and -17%) was observed 1 minute following the initial infusion for the high dose groups (0.2 and 2 mg/kg) that returned to baseline for the 2 mg/kg group and continued to rise above baseline levels for the 0.2 mg/kg group (Fig. S3H). Collectively, these results are comparable with the hemodynamic profile observed following an acute infusion of the endogenous ligand, pyr-AP-13 in this model (Fig. S4)

Chronic oral administration of the APJ small molecule agonist AM-8123 reduces collagen burden and improves cardiac function in a MI rat model - To determine how the acute hemodynamic changes observed in the MI model translate to alterations in cardiac performance over longer periods of exposure, we next measured cardiovascular function during 8 weeks of twice daily oral administration of AM-8123 with or without co-administration of losartan, a standard of care therapy for systolic heart failure. Lewis rats (2-3 month old) underwent permanent LAD ligation to generate MI induced HF. Echocardiography was performed one week post-MI for baseline values and animal exclusion prior to treatment initiation. Animals with an EF ≤ 45%
and a medium infarct one week post-MI were randomly assigned to four groups (vehicle, AM-
8123, Losartan, or AM-8123 + Losartan). AM-8123 (100 mg/kg) and vehicle were administered
BID for 9 weeks. Losartan (5 g/L) was administered in drinking water, ad libitum.
Echocardiography was performed at 4 and 8 weeks post-initiation of treatment for assessment of
cardiocascular function. Invasive hemodynamic assessment of cardiac function was performed
using a pressure-volume conductance catheter at study termination (9 weeks post treatment
initiation, 10 weeks following LAD ligation surgeries) to complement the non-invasive
echocardiographic end points (Fig. 4A). Sustained levels of exposure were maintained for both
AM-8123 and losartan treated groups (Fig. S5). These treatments did not alter bodyweight over
the course of the study (Fig. S6A). As expected, progression of the left ventricle chamber dilation
and deterioration of cardiac function occurred in MI-induced heart failure animals. FS and EF
were sharply reduced one week post-MI from normal levels (FS from ~22% reduced to ~16% and
EF from ~60% reduced to ~40% at long axis-B mode) (Fig. S6B-C).

Over the 2 month period, EF and FS declined while end diastolic volume (EDV) and end systolic
volume (ESV) increased in vehicle treated MI animals (Fig. S6B-E). Chronic treatment with AM-
8123 alone resulted in sustained improvement in systolic function, reflected by a significant
increase in FS (Fig. S6B) and EF (Fig. 4D, S6C). AM-8123 alone decreased both EDV and ESV
as measured by echocardiography but not by the invasive pressure-volume conductance catheter
at study termination (Fig. S6D-E, S7A-B). These improvements occurred without a meaningful
change in HR (Fig. S6F) or MAP (Fig. S7C) when compared to vehicle. The improvement in
cardiocascular function observed for AM-8123 is comparable in magnitude to the level of
improvement observed for losartan alone without the observed decrease in MAP that is associated
with losartan treatment (Fig. 4, Fig. S6, Fig. S7) suggesting that AM-8123 can improve cardiac function in the absence of sustained changes in blood pressure. The combination of AM-8123 with losartan did not result in further increase in EF and FS compared to monotherapy but did result in a significant decrease in SVR, which trended lower for each monotherapy alone, only reaching significance when combined (Fig. S7D).

Inotropic agents such as dobutamine are known to induce cardiac hypertrophy (47, 48). However, no evidence of cardiac hypertrophy was observed following chronic administration of AM-8123 (Fig. S7E). In addition to assessment of cardiac hypertrophy by weight, histological analysis further confirmed no significant difference in total myocardial volume among the treated groups when compared to the vehicle (Fig. S7F). A significant reduction in collagen deposition was observed as measured by picrosirius red (PSR) in all three treatment groups when compared to vehicle control, suggesting an improvement in post-MI remodeling and attenuated expansion of the border zone (Fig. 4B-C). The reduction in collagen deposition was associated with a trend towards a reduction in collagen 1A1 and periostin gene mRNA expression for both the AM-8123 and losartan treated groups (Fig. S8).

Additionally, chronic administration of AM-8123 and losartan, either alone or in combination, improved diastolic function as observed by a significant decrease in the isovolumetric relaxation constant (IVRT) (Fig. S6G) and the E/E’ ratio (Fig. S6H), both markers of myocardial stiffness. Both the relaxation constant tau (Fig. S7G) and LV filling pressure, EDP (Fig. S7H) trended lower following losartan treatment. The effect was more pronounced for the AM-8123 + losartan combination group, reaching significance for tau. This suggests that the reduction in collagen
content improved myocardial compliance following sustained exposure to either AM-8123 or losartan.

The improvement in cardiac function by the APJ small molecule agonist, AM-8123, is associated with a significant increase in ERK phosphorylation and a trend towards increased AKT, eNOS and AMPK phosphorylation in LV cardiac tissue following chronic administration (Fig. 5A-B, Fig. S9). These findings are consistent with both AM-8123 and pyr-AP-13 resulted in ERK phosphorylation in HUVEC cells grown under hypoxic conditions suggesting that endothelial cells may play a role in the beneficial effects of APJ activation on cardiac function following injury (Fig. 6A). Additionally, both AM-8123 and pyr-AP-13 mediated ERK and AKT phosphorylation in cells overexpressing hAPJ (Fig. 6B-C). As observed in the GTPγS binding, β-arrestin recruitment and internalization in vitro assays, AM-8123 is a more potent mediator of both ERK and AKT phosphorylation relative to pyr-AP-13 (ERK Log EC50 -9.30 ± 0.09 and -8.06 ± 0.15, AKT Log EC50 -8.98 ± 0.07 and -7.67 ± 0.05, respectively).

Acute intravenous administration of AM-8123 improves cardiovascular function in an anesthetized tachypaced canine heart failure model - To determine if the improvements in cardiac function observed in the rat models translate to a large animal model, we next evaluated AM-8123 in both conscious and anesthetized tachypacing-induced heart failure beagles. In vivo cardiovascular endpoints were measured by telemetry implants collecting electrocardiograms (ECGs), systemic arterial pressure, LV pressure, aortic flow, and LV dimensional data. Each animal was subjected to four interventions in a randomized manner, with each separated by ≥1
week, to allow recovery: 1. vehicle treatment under isoflurane anesthesia; 2. AM-8123 under isoflurane; 3. vehicle treatment in conscious state; and 4. AM-8123 in conscious state (Fig. 7A).

Intravenous administration of AM-8123 at 0.035, 0.09, 0.9 and 9 mg/kg evoked a dose-dependent increase in unbound AM-8123 in plasma (Fig. 7B) that was associated with a dose-dependent increase in cardiac contractility as observed by an increase in preload recruitable stroke work (PRSW) and the end systolic pressure volume relationship (ESPVR) (Fig. 7C-D), both of which are load-insensitive measures of LV performance. This did not translate to a significant increase in SV, HR or MAP relative to vehicle (Fig. S10A-C). AM-8123 infusion resulted in a modest but significant decrease MAP/CO, suggesting a decrease in SVR or cardiac afterload (Fig. S10D). No change in the relaxation parameters, dP/dt min and tau, were observed (Fig. S10E-F). When hemodynamic measurements were made in conscious dogs that had tachypacing induced HF, we did not observe significant hemodynamic improvements with AM-8123 (Fig. S11). The differential effect of AMG-8123 in anesthetized vs. conscious dogs may be attributed to the well-known sympatholytic effects of general anesthesia.

APJ small molecule agonist, AMG 986, is well tolerated, causing no adverse effects in nonclinical toxicology models - To support the clinical development of AMG 986, toxicology studies were conducted in accordance with regulatory guidelines. In the pivotal toxicology studies, AMG 986 was well tolerated and caused no adverse effects at oral daily doses up to 1000 and 300 mg/kg in 28 day repeat-dose toxicology studies in rats and canines, respectively. Mean plasma drug exposures (AUC) (368 and 538 µg.h/mL) and Cmax values (141 and 98 ug/mL) in the rat and canine, respectively, provide adequate multiples over the anticipated efficacious dose in
humans based on an approximate 10% increase in EF in the tachy-paced canine model of heart failure. No significant changes in body weight or clinical chemistry end points were observed for any dose groups (Fig. S12-S15). In safety pharmacology studies, AMG 986 caused no adverse effects on the central nervous or respiratory system when evaluated in rats at single doses up to 1000 mg/kg. AMG 986 did not significantly inhibit the human ether à go go related gene (hERG) channel current in vitro (10% inhibition at 300 µM) (Fig. S16) and had no meaningful dose dependent impact on ECG or HR when evaluated in an exploratory 28 day repeat dose toxicity study in telemetered canines at doses up to 300 mg/kg (Fig. S17-S18). AMG 986 was not genotoxic and did not demonstrate any significant inhibition of an extensive panel of phosphodiesterases (Table S1). Furthermore, selectivity was accessed using the aequorin luminescence assay for a panel of 13 GPCRs. No activity was observed against any of the GPCRs evaluated (Table S2). Additionally, AMG 986 falls within a structural class that are generally potent Pgp substrates, and subsequently not expected to cross the blood-brain barrier. Collectively, these data suggest that AMG 986 has a favorable risk-benefit profile to warrant clinical evaluation.

Discussion

Heart failure remains a leading cause of death worldwide, and new medications are desperately needed to manage disease progression. The apelin/APJ axis is a novel pathway implicated in a variety of diseases including heart failure (49-52). Given the short half-life of the endogenous peptide ligands, a key question remained related to the feasibility of developing a safe and effective small molecule APJ agonist. Here, we demonstrate that it is feasible to develop an APJ agonist that mimics the endogenous ligand pharmacologically and is safe to proceed into clinical studies. The small molecule agonists presented here exhibit low nanomolar potency for G-protein
signaling, β-arrestin recruitment and receptor internalization. Both AM-8123 and AMG 986 were comparable to the endogenous ligand, pyr-apelin-13, in these assays, and both exhibited similar potency for G-protein signaling and β-arrestin recruitment. Additionally, no discernible differences in efficacy were observed for AMG 986 and AM-8123 following acute infusion in either the rat MI or tachypaced dog models. Given the structural similarity and comparable efficacy, AM-8123 was used as a tool molecule during follow-on studies such as the chronic MI rat study and the anesthetized vs conscious tachypaced canine study as AMG 986 was progressing toward clinical development.

AM-8123 and AMG 986 function as balanced APJ agonists, equally potent for stimulating G-protein signaling and β-arrestin recruitment. It is worth noting that G-protein selective ‘biased’ small molecules were also identified and evaluated through the tachypaced canine HF model. However, no clear advantage was observed for the biased molecules for any relevant cardiovascular endpoints. As such, a strategic decision was made in favor of developing unbiased agonists, given they were further along in development.

Our molecular modelling results demonstrate that AM-8123 possesses features mimicking the C-terminal part of apelin-13, especially the Met-11 and Phe-13 residues. This coincides with the importance of C-terminal part of apelin-13 in receptor binding and activity revealed by previous studies (46, 53-55). For example, the alanine scanning results demonstrated that M11A mutation decreases the receptor binding (55). Besserer-Offroy et al. discovered that the C-terminal Phe-13 of apelin plays key role in β-arrestin recruitment which is in accordance with the findings of Iturrioz et al. that this residue is important for APJ internalization (53, 54). Interestingly, both
studies demonstrated that Phe-13 of apelin-13 does not play a major role in receptor binding, activation of $G_{\alpha_{i/o}}$ or the inhibition of cAMP production. In our study, however, AM-8123 shows activities in both β-arrestin recruitment and G_{α} protein activation. The later activity may be attributed to the unique elements of AM-8123 such as its methylpyridine group that inserts deeper into the orthosteric site than apelin-13. Thus, both features mimicking the C-terminal part of apelin-13 and the unique elements make AM-8123 a potent agonist of APJ although it is smaller than the endogenous peptide ligand.

The APJ small molecule agonists presented here alter cardiac hemodynamics in two rat and one canine model of impaired cardiac function. Systolic function was improved in all models. Additionally, the MAP/CO ratio, which is used to approximate SVR, decreased in all models. CO is a major factor that determines MAP, where an increase in CO leads to an increase in MAP. A decrease in SVR in all models suggests that the small molecule agonists impact vascular tone even in the absence of a sustained change in blood pressure. Finally, changes were observed in cardiac hemodynamics that were unique to the model, the duration of treatment (acute vs chronic), or the state of the animal (conscious vs anesthetized), which will be discussed in detail, below.

Acute intravenous infusion in ZSF1 obese rats improved systolic function as observed by the increase in EF and SV alone and in combination with dobutamine. This was associated with a modest but significant increase in HR in the absence of dobutamine, which could contribute to the favorable hemodynamic response. During dobutamine challenge where HR was more similar between AMG 986 and vehicle treated groups, a significant increase in EF and SV were observed.
suggesting that the improvement in cardiac performance under conditions of stress or hemodynamic challenge is, at least in part, independent of HR.

The vascular effects caused by modulation of the apelin/APJ axis are complex. Apelin can act as a potent vasodilator or vasoconstrictor depending on the underlying state of the vascular bed (12, 56-58). APJ is expressed in both endothelial and smooth muscle cells within the vessel wall, and apelin’s vasodilatory properties are driven, in part, by endothelium derived increases in NO bioavailability (58-63). ZSF1 obese rats exhibit endothelial dysfunction (64). Thus, it remains possible that endothelial dysfunction in this model may have muted the vasodilatory effects associated with APJ activation.

Chronic oral administration of AM-8123 did not result in cardiac hypertrophy, a form of cardiac remodeling that may facilitate transient stress-adaptation but plays a more maladaptive role during chronic stress (65-68). Previous work has shown that the apelin/APJ axis can play a protective role by attenuating the development of cardiac hypertrophy under a variety of conditions. For example, stimulation of the apelin/APJ axis has been shown to alleviate angiotensin II-induced, oxidative stress-induced as well as exercised-induced pathological hypertrophy (65). Additionally, apelin administration was found to decrease the HW/BW ratio in mice post-MI (69). We believe these protective effects may have blunted cardiac hypertrophy that one would expect from the chronic administration of a traditional inotrope.

Chronic administration of AM-8123 decreased collagen levels suggesting an attenuation of post-MI remodeling and border zone expansion. This was associated with improved diastolic function.
suggesting that the reduction in collagen content improved myocardial compliance. Previous work has shown that apelin can ameliorate myocardial damage in MI rats via enhancement of myocardial NO production and decreased lipid peroxidation (70). The apelin/APJ pathway has also been shown to promote angiogenesis (15, 71-76). Increased vascularization at the site of myocardial injury is known to reduce scar formation and preserve cardiac function (77-79). The reduction in collagen volume observed with this small molecule agonist may be driven by these mechanisms and is supported by the trend towards increased eNOS phosphorylation in LV cardiac tissue as well as the robust increase in ERK phosphorylation in endothelial cells grown under hypoxic conditions.

There were no significant improvements in cardiac function following the co-administration of AM-8123 and losartan relative to the individual therapies. If these observations translate to the clinical setting, then this raises the possibility that an APJ agonist may add little to available low-cost RAS antagonist therapies that are widely prescribed to heart failure and hypertensive patients. In this instance, APJ agonism should be considered in situations where RAS antagonist therapies are intolerable, for example, in patients where adequate doses of losartan or other RAS antagonists are limited by low blood pressure, or otherwise contraindicated.

Acute intravenous infusion of AM-8123 in anesthetized beagles with HF resulted in a dose dependent increase in PRSW and ESPVR but not dP/dt max. We believe ESPVR and PRSW are better measures of cardiac contractility as they are less sensitive to load relative to dP/dt max. The increase in both PRSW and ESPVR under anesthesia suggests that under these conditions, AM-8123 increased myocardial contractility. These data are consistent with previous work indicating
that apelin-activated APJ increased PRSW in anesthetized mice (40). Why dP/dt max, a load-dependent measure of contractility, is unchanged in the tachypaced induced HF beagle model but is increased in the LAD ligation induced MI rat model is unclear. It is known that autonomic balance is different in different species and it is feasible that load dependent effects are more sensitive to changes in autonomic tone balance.

No effect on cardiovascular or hemodynamic function was observed during acute intravenous infusion of AM-8123 in conscious tachypaced-induced HF beagles. Given that the anesthetized arm of the study was conducted in the same animal prior to the conscious arm of the study raises the possibility that the small molecule desensitized APJ during administration under anesthesia. However, it is worth noting that the half-life of AM-8123 is 2.2 hrs, and there was a minimum of a 7 day washout following the acute infusion of AM-8123. Therefore, one week after an initial exposure to AM-8123, we would anticipate there to be ~5 x10^{-24} percent, or approximately zero, remaining. We believe that this provides time for APJ to become re-sensitized if desensitization occurred.

General anesthesia alters sympathetic activity and can cause a cardio-depressed state, as evidenced by decreased HR, dP/dt max and min, as well as EF. This may result in a larger window to observe a favorable hemodynamic response. Additionally, HR is inversely proportional to EDV. As HR decreases, EDV increases in anesthetized animals leading to an increase in passive stretch, or preload. It is therefore possible that passive stretch increases cardiomyocyte length augmenting APJ induced cardiac effects in a load dependent manner.
There are several limitations with this study. Our lack of complete understanding related to the mechanism by which general anesthesia influences the acute hemodynamic effects of the APJ small molecule agonists is one limitation. Additionally, the relative contribution of the direct versus indirect effects of the small molecule agonists on augmenting cardiac function is another limitation. Understanding both would aid in our general understanding of APJ biology and facilitate clinical assessment. Finally, the translatability of animal models is always a concern, and it remains unclear if the improvements in acute LV hemodynamics will predict our ability to improve cardiac function in a patient population anticipated to be significantly more heterogeneous than our animal cohorts.

APJ is considered an emerging therapeutic target for a variety of disease indications (49-52). We show here that it is feasible to develop a potent small molecule agonist suitable for clinical studies. Apelin activation of APJ exhibits pleiotropic effects on the cardiovascular system (20). Our data are consistent with the pleiotropic actions of APJ and indicate that small molecule APJ activation results in improvements in vascular tone as well as load insensitive measures of cardiac function. Collectively, this activity results in a globally favorable hemodynamic effect and sustained treatment leads to reduced collagen burden and improved myocardial compliance. However, the lack of additivity on top of RAS antagonist therapies raises concerns related to the utility of modulating the APJ axis for a chronic HF indication.

Materials and Methods

Small Molecule Synthesis – AM-8123 and AMG 986 were prepared as described (WO2016187308A1, Triazole agonists of the APJ receptor)(43).
In Vitro Assays – APJ activation was measured utilizing the scintillation proximity assay (SPA) based G-protein coupled receptor assay as well as the HitHunter cAMP assay (kit 90-0075-03, DiscoveRx). APJ internalization was measured using the PathHunter GPCR internalization assay (DiscoveRx), and β-arrestin recruitment was measured using the ProLink β-gal complementation technology (93-0001, DiscoveRx). A detailed description of each assay can be found within the supplemental material.

Saturation binding of 3H AM-8123: APJ gene mutations were generated by PCR and sub-cloned into the pFLAG-CMV-3 vector (Sigma). The mutant plasmids were prepared by Biozilla. Cell membranes were prepared as described previously (80) from 293T cells transiently transfected with hAPJ mutants. 3H AM-8123 was diluted serially with ice-cold binding buffer (20 mM Hepes, pH 7.5, 5 mM MgCl$_2$, 100 mM NaCl and 0.1% (w/v) fatty acid-free BSA). The assay was performed with 5-10 µg of membrane protein in a 96 well plate incubated with the radiolabel at room temperature for 1.5 hours with gentle agitation. Non-specific binding was determined in the presence of 1 µM unlabeled pyr-apelin-13 or AM-8123. The binding reactions were terminated by filtration with a GF/C filter plate followed with five washes of ice-cold buffer. 50 µL of scintillant was added to each well of the plate and radioactivity was measured using the TopCount Microplate Scintillation counter (PerkinElmer). Saturation binding curves were generated using 3 replicates (separate experiments) for each data point.

Confocal microscopy: To generate β-arrestin 2-GFP construct, β-arrestin 2 was fused to the N-terminal of GFP and subcloned into pIREShyg3 vector. U2OS cells were transfected with
pIREShyg3-arrestin-GFP plasmid with Lipofectamine LTX according to manufacturer’s protocol.
β-arrestin2-GFP stable cells were selected with medium contains 500 ug/mL Hygromycin. HA-tagged human full length APJ in pJiF1.1 vector was used as a template to generate APJ Bacmids by PCR-based site-directed mutagenesis. The resulting Bacmids were used to generate BacMam virus by infecting insect SF9 cells according to standard protocol.

U2OS cells stably expressing β-arrestin2-GFP were seeded into 6-wells plate at a density of 80,000 cells/well and grown overnight. Attached cells were transduced with BacMam virus of hAPJ fused by HA tag. Six hours after virus transduction, cells were suspended and seeded at a density of 30,000 cells/well into 8-well chamber dishes and grown overnight before experiment. Cell surface receptors were stained with 10 ug/mL AlexFluor 594 conjugated anti-HA antibody (Invitrogen, Catalog # A-21288) at room temperature for one hour. The cells were then stimulated with AM-8123 at final concentration of 100 nM in fresh prepared medium. The distribution of APJ and β-arrestin2 were monitored using a Leica SP8 confocal microscope.

The phospho-AKT and phospho-ERK in vitro assays quantified the ratio of phospho/total protein levels. Assessment of ERK and AKT phosphorylation in CHO-hAPJ cells were quantified using the Phosph-ERK 1/2 (Thr202/Tyr 204) kit (Cisbio, 64ERKPEG) and the Phosph-AKT (Ser473) kit (Cisbio, 64AKSPEG), respectively, according to the supplied protocols in cells seeded at 50,000 cells/well in 96 well plates.

For analysis in HUVECs cells (Lonza, C2519A), cells were seeded at 3 million cells in 10 cm dishes. Cells were grown under hypoxic conditions (1% O2, 5% CO2 and 94% N2) for 16 hrs prior to the addition of 1uM pyr-AP-13 or 1uM AM-8123 and incubated for 15, 30 or 60 minutes
and compared to untreated control cells. Cells were subsequently washed and scraped into individual falcon tubes, centrifuged to remove the supernatant and resuspended in RIPA buffer (Cell Signaling, 9806) containing 1X Halt protease and phosphatase inhibitor cocktail (Thermo scientific, 1861281). Western blot analyses were conducted with 100 ug of total protein/lane using a NuPAGE 4-12% Bis-Tris Gel run at 100V. Samples were then transferred using the iBlot gel transfer system and phospho and total ERK were detected using antibodies from Cell Signaling (4370 and 9107) at 1:500 dilution.

For Western blot analysis of LV cardiac tissue, protein was isolated from flash frozen samples using T-PER tissue protein Extraction Reagent (Thermo, 78510). Western blots were performed as described above using the following antibodies: eNOS (phospho-eNOS (pS1177), BD Transduction Laboratories, 612393, 1:500 and total-eNOS, Pierce (Thermo Scientific), PA1-037, 1:500), ERK (phospho-ERK (p44/42), Cell Signaling, 4370, 1:500 and total-ERK, Cell Signaling, 9107, 1:500), AKT (phospho-Akt (Ser473), Cell Signaling, 9271, 1:1,000 and total-AKT, Cell Signaling, 4691, 1:1,000), AMPK (phospho-AMPK (Thr172), Cell Signaling, 50081, 1:500 and total-AMPK, Cell Signaling, 2532, 1:1,000).

For qRT-PCR of LV cardiac tissue, RNA was isolated from flash frozen samples using RNeasy mini kit (Qiagen, 74104) and the supplied product protocol. PCR was performed using the TaqMan RNA-to-CT 1-Step kit (Life Technologies, 4392653) according to the supplied product protocol with the following primer/probes: Col1A1 (Rn01463848_m1), Tgfb1 (Rn00572010_m1), Acat2 (Rn01526241_g1), Postn (Rn01494627_m1), and Gapdh (Rn01775763_g1).
Molecular modeling - The PPM server was used to calculate rotational and translational positions of APJ in a membrane (81). A two-step minimization was further performed with Prime in Schrödinger considering implicit membrane environment: firstly, only AP-13 and residues within 5 Å of it were minimized then the whole complex was minimized.

For the APJ/AM-8123 complex model, the initial model of wild type APJ (26-327) was built via homology modeling in Discovery Studio, with the co-crystal structure of APJ and a small molecule agonist (AM-8123’s analog, unpublished data) as the template. The ICL3 loop region was optimized with Prime Refine Loops in Schrödinger, with implicit membrane placed as aligned APJ structure (PDB ID 5VBL) from the Orientations of Proteins in Membranes (OPM) database (81). The APJ model was validated with “Verify Protein (Profiles-3D)” in Discovery Studio. The Verify Score of the model is 158.64, which is higher than the Verify Expected High Score 137.429 and indicates the model has high quality. Then the APJ model was used for molecular docking of AM-8123 with Glide (XP mode) in Schrödinger (Schrödinger Release 2017-3: Glide, Schrödinger, LLC, New York, NY, 2017.). Finally, the restrained minimization was applied to the top ranked binding pose together with APJ to generate the APJ/AM-8123 complex model.

Animal Studies – All animals were housed at AAALAC, international-accredited facilities and all research protocols were approved by their respective Institutional Animal Care and Use Committees (IACUC). The pivotal nonclinical safety studies were performed in accordance with ICH M3 and Good Laboratory Practices (GLP; United States Code of Federal Regulations, Title 21, Part 58: Good Laboratory Practice for Nonclinical Laboratory Studies). A detailed description of the in vivo work can be found within the supplemental material.
Statistics - *In vitro* dose response curves were analyzed using Genedata Screener. Raw data was normalized to DMSO. Pyr-AP-13 was used as positive control. The curve fitting algorithm used for dose response data analysis in Genedata Screener is a custom implementation of the ROUT curve-fitting algorithm (Robust regression with outlier detection), which uses a four-parameter logistical (4PL) Hill model. The *in vitro* results were expressed as the mean ± standard error mean. Results were considered significantly different for $p < 0.05$. The statistical test used for each experiment is indicated within the figure legend. A students two-tailed t-test was used for experiments with two groups without repeated measurements. A one-way ANOVA was used for experiments with 3 or more groups. A two-way ANOVA for experiments with 2 or more groups with repeated measurements. All the *in vivo* results were expressed as the mean ± standard error.

Acknowledgments: We thank Julie Freebersyser, Cheryl Loughery, Maya Patrick, Josh Dobroff, Alysha Hoffman, Jackson Khin, and Danny Wong for technical assistance. Wen-Chen Yeh for
helpful discussions. Jason Legg for feedback related to the statistical tests used to measure significance. Jeff Reagan, Bill Richards, and Saptarsi Halder for critical review of the manuscript.
References:

Eurasian Patent Office (AM, AZ, BY, KG, KZ, RU, TJ, TM)

Fig. 1. APJ receptor activation with small molecule agonists and endogenous ligand. (A) The chemical structure of AM-8123 and AMG 986. The APJ small molecule agonists AM-8123 (red) and AMG 986 (blue) and the endogenous ligand pyr-apelin-13 (black) alter (B) cAMP levels (8, 16 and 10 individual experiments for each concentration of AM-8123, AMG 986 and pyr-apelin-13, respectively) and promote binding of non-hydrolysable (C) GTP\(\gamma\)S (14, 24 and 16 individual experiments for each concentration of AM-8123, AMG 986 and pyr-apelin-13, respectively) in hAPJ overexpressing cells. Both AM-8123 and AMG 986 activation of hAPJ led to (D) β-arrestin recruitment (8, 8, and 24 individual experiments for each concentration AM-8123, AMG 986 and pyr-apelin-13, respectively) and (E) receptor internalization (24 individual experiments per group) in a dose dependent manner. Data shown as a box and whiskers plot with a line indicating the median, the box representing the 25th-75th interquartile range and the Tukey method to calculate the whiskers.
Fig. 2. Molecular modeling overlay of wild type APJ in complex with apelin-13 (in white) and AM-8123 (in cyan). (A) The chemical structure of AM-8123 and regions 1-4 involved in interactions with APJ. (B) The overview of binding modes of apelin-13 and AM-8123 at APJ orthosteric site with labeled regions 1-4. (C) Detailed interactions of regions 1-4. The protein is shown as cartoon, apelin-13 and AM-8123 are shown as sticks, and the residues are shown as lines.
Fig. 3. Acute infusion of the APJ small molecule agonist AMG 986 increases cardiac reserve during dobutamine challenge in a rat model of impaired metabolic function. (A) ZSF1 obese rats (19 weeks old) were randomized into two groups based on a measure of diastolic function (E/E': 21±4) and body weight (vehicle: 524±21, AMG 986: 532±25 grams). AMG 986 (1 mg/kg.min) or vehicle were infused for 10 minutes following catherization and baseline stabilization. Dobutamine (12 ug/kg.min) was co-administered for an additional 5 minutes to measure cardiac reserve capacity. The effect of AMG 986 infusion +/- dobutamine on (B) SV, (C) HR, and (D) SVR relative to vehicle is shown. Data shown as individual animals (circles) together with the group mean (bars) ± SEM. N = 13-14 animals per group. Data analyses performed blinded. Significance measured by a two-tailed unpaired t-test (* P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001).
Fig. 4. Chronic administration of AM-8123 increased EF and reduces collagen burden in a LAD ligation induced MI rat model. (A) Rats were treated with vehicle, AM-8123, losartan or both. (B, C) Picrosirius Red (PSR) staining of heart serial sections revealed less collagen deposition in the treated groups. (D) This was associated with a significant increase in EF. Data shown as individual animals (circles) and the group mean (bars) ± SEM. Data analyses were performed blinded. N = 9-10/group for histology. N = 9-14 for treated groups and N = 7 for sham for assessment of cardiac function. Significance was measured by a one-way ANOVA - Tukey’s post-test (* P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001).
Fig. 5 Chronic administration of AM-8123 induced known APJ signaling pathways. Western blots reveal a significant increase in (A) ERK and a trend towards increased (B) AKT phosphorylation in LV cardiac tissue collected from a subset of animals as part of the study presented within Fig. 4. Individual data points (circles, N = 5-6) and group mean (bars) ± SEM are shown. Significance measured by a two-tailed unpaired t-test.
Fig. 6. (A) Both AM-8123 and pyr-apelin-13 result in ERK phosphorylation in HUVEC cells grown under hypoxic conditions. Additionally, AM-8123 and pyr-AP-13 exhibit a dose dependent increase in both (B) ERK and (C) AKT phosphorylation in CHO cells overexpressing hAPJ.
Fig. 7. Acute administration of the APJ small molecule agonist AM-8123 improves markers cardiac function in beagles with tachypacing-induced HF under isoflurane anesthesia. (A) Instrumented animals were subjected to an overdrive pacing protocol for ~4 weeks to induce heart failure. Pace makers were turned off at least 15 minutes prior to the initiation of treatment. Vehicle (Veh) and AM-8123 were administered to anesthetized (Iso) animals in a randomized manner. For AM-8123, all canines were infused with escalating doses of AM-8123 resulting in increasing levels of (B) exposure and a dose-dependent increase in two load-insensitive measures (C) PRSW and (D) ESPVR. Individual data points (circles) and group mean (bars) ± SEM are shown. Data analyses were performed blinded. Significance measured by a two-way ANOVA – Tukey post-test (* P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001).
Table 1. Several APJ mutations impair binding to AM-8123

<table>
<thead>
<tr>
<th>Residue</th>
<th>TM helix</th>
<th>KD (nM)</th>
<th>Bmax</th>
<th>no. exps</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>NA</td>
<td>4 ± 2</td>
<td>3600 ± 1400</td>
<td>10</td>
</tr>
<tr>
<td>Y35A</td>
<td>TM1</td>
<td>1 ± 1</td>
<td>1100 ± 600</td>
<td>6</td>
</tr>
<tr>
<td>W85A</td>
<td>TM2</td>
<td>too weak to determine</td>
<td>too weak to determine</td>
<td>4</td>
</tr>
<tr>
<td>F110A</td>
<td>TM3</td>
<td>42 ± 40</td>
<td>5900 ± 4200</td>
<td>5</td>
</tr>
<tr>
<td>M113A</td>
<td>TM3</td>
<td>8 ± 6</td>
<td>4400 ± 2800</td>
<td>9</td>
</tr>
<tr>
<td>R168A</td>
<td>ECL2</td>
<td>12 ± 8</td>
<td>5800 ± 3200</td>
<td>6</td>
</tr>
<tr>
<td>Y185A</td>
<td>ECL2</td>
<td>too weak to determine</td>
<td>too weak to determine</td>
<td>6</td>
</tr>
<tr>
<td>E198A</td>
<td>TM5</td>
<td>7 ± 3</td>
<td>2700 ± 900</td>
<td>5</td>
</tr>
<tr>
<td>K268A</td>
<td>TM6</td>
<td>too weak to determine</td>
<td>too weak to determine</td>
<td>6</td>
</tr>
<tr>
<td>Y271A</td>
<td>TM6</td>
<td>too weak to determine</td>
<td>too weak to determine</td>
<td>7</td>
</tr>
<tr>
<td>M288A</td>
<td>TM7</td>
<td>23 ± 8</td>
<td>4000 ± 1800</td>
<td>3</td>
</tr>
<tr>
<td>F291A</td>
<td>TM7</td>
<td>too weak to determine</td>
<td>too weak to determine</td>
<td>7</td>
</tr>
<tr>
<td>T295A</td>
<td>TM7</td>
<td>10 ± 11</td>
<td>3000 ± 1700</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 2. AMG 986 and AM-8123 exhibit an improved PK profile

<table>
<thead>
<tr>
<th></th>
<th>CL (L/hr/kg)</th>
<th>Vss (L/kg)</th>
<th>Terminal half-life (hr)</th>
<th>%F (oral bioavailability)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rat</td>
<td>Dog</td>
<td>Rat</td>
<td>Dog</td>
</tr>
<tr>
<td>Pyr Apelin 13</td>
<td>357</td>
<td>4.3</td>
<td>9.3</td>
<td>0.7</td>
</tr>
<tr>
<td>AMG 986</td>
<td>0.78</td>
<td>0.08</td>
<td>0.6</td>
<td>0.19</td>
</tr>
<tr>
<td>AM-8123</td>
<td>0.62</td>
<td>0.32</td>
<td>0.81</td>
<td>0.33</td>
</tr>
</tbody>
</table>