Ultrasound-induced microbubble cavitation via a transcanal or transcranial approach facilitates inner ear drug delivery

Ai-Ho Liao¹,²,#, Chih-Hung Wang³,⁴,⁵,#, Ping-Yu Weng⁶, Yi-Chun Lin³, Hao Wang⁴, Hang-Kang Chen³, Hao-Li Liu⁷, Ho-Chiao Chuang⁶, Cheng-Ping Shih⁴,*

1. Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
2. Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan.
3. Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
4. Department of Otolaryngology–Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
5. Taichung Armed Forces General Hospital, Taichung 41168, Taiwan.
6. Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
7. Department of Electrical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan.

Contributed equally:
Name: Ai-Ho Liao and Chih-Hung Wang

*Corresponding author for reprint requests:
Name: Cheng-Ping Shih
Conflict of interest statement: The authors have declared that no conflict of interest exists.
Abstract

Ultrasound-induced microbubble (USMB) cavitation is widely used to promote drug delivery. Our previous study investigated USMB targeting round window membrane by applying the ultrasound transducer to tympanic bulla. In the present study we further extended the use of this technology to enhance drug delivery to inner ear by introducing the ultrasound transducer into external auditory canal (EAC) or applying it to skull. Using a three-dimensional-printed diffusion apparatus mimicking the pathway for ultrasound passing through and reaching middle ear cavity in vitro, both models simulating the transcanal and transcranial approach demonstrated 4.8-fold and 3.7-fold higher delivery efficiencies, respectively. In vivo model of guinea pigs, by filling tympanic bulla with microbubbles and biotin-fluorescein (biotin-FITC), USMB applied transcanally and transcranially induced 2.8-fold and 1.5-fold increases in biotin-FITC delivery efficiencies, respectively. In addition, the gentamicin uptake by cochlear and vestibular hair cells and gentamicin-induced hair cell loss were significantly enhanced following transcanal application of USMB. On the 28th day after transcanal USMB, safety assessment showed no significant changes in the hearing thresholds and the integrity of cochlea. These are the first results to demonstrate the feasibility and support the potential clinical application of applying USMB via EAC to facilitate drug delivery into inner ear.
Graphical abstract

Keywords: ultrasound, microbubbles, cavitation, transcranial, transcanal, round window membrane
Introduction

The clinical administration of drugs to the inner ear can be performed systemically or locally (1). The local intratympanic injection of drugs has generally been used since 1990 and is recognized as the most-effective and least-harmful current method. The treatment agent is injected into the middle ear cavity via an intratympanic injection, and it enters the inner ear via absorption by the round window membrane (RWM) and oval window (2, 3). The distribution of the drug in the inner ear depends on through which window it enters the inner ear and whether it is administered systemically or locally. The perilymph circulation in the inner ear is slow and the blood–labyrinth barrier prevents a drug in the blood from entering the inner ear, and both mechanisms make the systemic route for inner ear drug delivery inefficient (1). Moreover, the drug will accumulate in cochlea at only a low concentration, and so many methods are currently being investigated to improve the permeability of the RWM for local drug delivery. Some efficient carriers such as poly (lactic-co-glycolic acid) nanoparticles and phospholipid-based nanoparticles are used as inner ear nanoparticulate carriers to produce better therapeutic effects and to maintain long-term particle circulation in the perilymph (4, 5).

Some agents such as collagenase (6), histamine and local anesthetic phenols (7), and hyaluronic acid (8) have been applied to the RWM to destroy its outer epithelial cells and thereby enhance drug delivery without resorting to surgery. However, these approaches may cause infection in the middle ear cavity and damage the RWM or even the inner ear itself (9).
Therefore, identifying a simple and effective method that does not damage the structure of the cochlea is an important issue for inner ear drug delivery. A previous *in vitro* study created microperforations in the RWM with a 12.5-µm-diameter needle to enhance diffusion through the membrane (10). Two designs of multiple (four or eight) serrated needles were investigated, and it was found that an octagonal needle arrangement produced an oval-shaped perforation of the RWM that performed better than when using four needles (11). However, the ability to create a hole of an appropriate size in the RWM during surgical manipulation without a deleterious increase in the intracochlear pressure remains to be demonstrated.

Improved versions of the microbubbles (MBs) that are commonly used as ultrasound (US) contrast agents have recently be used to improve the diagnostic confidence in echography and in combination with US as a tool for drug delivery and therapeutic monitoring. Applying this technique to clinical use requires evaluations of the sonoporation mechanism(s), US parameters, and drug types and doses (12). Transcranial noninvasive magnetic-resonance-imaging-guided focused US is a method of disrupting the blood–brain barrier (BBB) for enhancing brain tumor treatments via intravenously injected MBs interacting with the US (13). Additionally, MB echoes can be detected with passive cavitation detection (PCD) for real-time feedback control the BBB disruption during focused ultrasound-induced microbubble (USMB) cavitation (14, 15). The use of focused USMB cavitation for BBB disruption is receiving considerable attention, and there are now widely accepted measures of safety and a good understanding of its clinical
relevance (16). However, the feasibility of this noninvasive technique has been not widely investigated for other applications.

Our previous study demonstrated the practical application of using USMB to increase the permeability of the RWM, in which a surgical technique was used to remove the temporal bone and expose the membrane (17). We subsequently expanded that technique to explore the delivery of dexamethasone mediated by USMB and its protective effects against noise exposure in animal models (18). In clinical practice, the transcanal approach is often indicated for transtympanic injections of drugs to treat various inner ear diseases and is applied to most patients undergoing endoscopic ear surgery (19). The transcanal approach has the advantage of conveniently and directly reaching the middle ear without needing to make an external incision.

The present study used two nonsurgical techniques (transcanal and transcranial USMB approaches) to facilitate drug delivery into the inner ear through the RWM in vivo. Before performing the animal experiments, the feasibilities of the USMB techniques for transcanal and transcranial approaches were demonstrated in vitro with a three-dimensional (3D)-printed diffusion apparatus that mimics two pathways for the US sonication: (1) through the external auditory canal and tympanic membrane, then reaching the middle ear cavity and targeting the RWM, and (2) through the skull bone then reaching the middle ear cavity and targeting the RWM.

For measuring drug diffusion through the guinea pig RWM, some previous studies have
utilized 3D-printed acrylic holders adapted to the round window niche using 3-ml Franz diffusion cells (10, 11). However, the large volume of these Franz cells and the time-consuming procedures necessary to obtain transport parameters greatly restrict their application. A previous study demonstrated a 3D-printed, pocket-size diffusion cell as an in vitro tool for analyzing skin permeation (20). Therefore, a new 3D-printed diffusion apparatus for the initial assessment of drug permeation through the RWM was necessary to simulate the volume of the middle ear cavity, which might affect the efficacy of USMB cavitation for inner ear drug delivery. Moreover, PCD was used to evaluate the use of stable or inertial USMB cavitation for inner ear drug delivery. Since the transcanal and transcranial delivery methods are noninvasive, it is expected to be straightforward to translate USMB cavitation to the clinical enhancement of inner ear drug delivery in the near future.

Results

Optimizing the in vivo parameters for middle-ear USMB

High-frequency US images of 1.4×10⁷ MBs/mL albumin-shelled MBs without and with US sonication at 1, 2, 3, and 4 W/cm² for 1 minute are shown in Figure 1A–E, respectively; the signal intensities in Figure 1A–E are quantified in Figure 4F. The image intensity of the MBs before US sonication was 21.1±0.2 dB, and 7.5±0.9, 4.9±0.9, 3.8±0.3, and 3.8±0.4 dB with US sonication at 1, 2, 3, and 4 W/cm² for 1 minute, respectively. The efficiencies of MB destruction
for US sonication at power densities of 1, 2, 3, and 4 W/cm² for 30 seconds were 64.45%, 76.78%, 81.99%, and 81.99%, respectively. The temperature in the chamber during sonication at the different US powers increased by 1.25–1.80°C. In this experiment, applying US at a power density of 3 W/cm² for 1 minute almost destroyed the MBs, and this was the highest efficiency setting for the subsequent in vivo transcanal and transcranial approaches.

High-frequency US images of MBs without and with US sonication at 1, 2, 3, and 4 W/cm² for 3 minutes through the skull bone are shown in Figure 2A–E, respectively; the corresponding image intensities of the MBs were 20.1±0.9, 8.6±1.5, 6.0±0.6, 4.1±0.2, and 4.2±0.6 dB, respectively. The efficiencies of MB destruction for US sonication at power densities of 1, 2, 3, and 4 W/cm² for 3 minutes were 57.20%, 70.15%, 79.60%, and 79.10%, respectively. The temperatures on the skull bone and in the chamber of the phantom during US sonication at the different powers increased by 3.90–8.80°C and 1.10–2.30°C, respectively. The results indicate that the albumin-shelled MBs were significantly destroyed after being sonicated with US at 3 W/cm² through either the tympanic membrane or the skull bone (p<0.001, Figure 1F; p<0.001, Figure 2F]. Therefore, the highest US power density of 3 W/cm² (for 1 and 3 minutes in the transcanal and transcranial approaches, respectively) was used in the subsequent in vitro and in vivo experiments.

In vitro cavitation detection

In vitro tube-phantom experiments were conducted to characterize how the energy
spectrum density changed with MB infusion. Figure 3 shows the area under the receiver operating characteristics curve (AUC) for two MB concentrations (1×, original, 1.40×10⁸ MBs/mL; 10×, 10-fold dilution 1.40×10⁷ MBs/mL) for 120 seconds (from 60 to 180 seconds). The detected AUC increased with the injections of MBs at the 60th second and returned to the baseline value when the injection of MBs into the tube phantom was stopped after 180 seconds. In Figure 3A, the AUCs for the inertial cavitation and stable cavitation of MBs at the 10× and 1× dilutions from 60 to 180 seconds were 3102±899, 1449±340, 1263±323, and 641±145, respectively. In Figure 3B, with US sonication through the skull bone, the detected AUCs for the inertial cavitation and stable cavitation of MBs at the 10× and 1× dilutions from 60 to 180 seconds were 2292±555, 2006±220, 960±242, and 796±88 respectively. US sonication at a power density of 3 W/cm² resulted in inertial cavitation that was more significant than stable cavitation at a dilution of either 10× or 1×, especially after injecting MBs. When the US sonication was applied through the skull bone, the detected average AUCs decreased in all experimental groups due to the attenuation caused by the bone. Moreover, the inertial cavitation was highest for MBs at the 10× dilution, and so this was used in the subsequent in vitro and in vivo experiments.

In vitro efficacy of USMBs for RWM permeation

Figure 4A shows the biotin-fluorescein (biotin-FITC) concentrations in the four groups for membrane penetration as analyzed using a fluorometer. In the 3D-printed diffusion-cell model,
the USMB cavitation greatly improved the biotin-FITC delivery in groups M1 (the single-membrane model), M1-20° (the single-membrane model, simulating the deviating the US transducer 20° from the center), M2 (the two-membranes model, simulating the transcanal approach), and M1+B (the single-membrane model through the skull bone, simulating the transcranial approach) by about 6.9, 5.7, 4.8, and 3.7 times, respectively, compared to solely soaking biotin-FITC within the diffusion cell. The concentration differed significantly ($p<0.05$) between the RWS (round-window soaking) and USM (USMB treatments) groups.

Transcanal or transcranial USMB promote the delivery of drugs into the inner ear without auditory damage

To confirm the efficiency of *in vivo* USMB-mediated drug delivery to the inner ear system, biotin-FITC was used as the delivery agent in the guinea pig model. The results for the inner ear perilymph in the transcanal and transcranial arms are shown in Figure 4B. In the transcanal arm, the fluorescence intensity of biotin-FITC when using the transcanal approach was significantly higher in the USM group than in the RWS group (4620±202.9 vs 1633±72.6, $p=0.013$). When performing the transcranial approach, the USM group also exhibited a higher level of biotin-FITC than that in the RWS group (10113±338.8 vs 6700.0±69.7, $p=0.049$). The application of USMBs increased the delivery of biotin-FITC by approximately 2.8-fold in the transcanal approach and 1.5-fold in the transcranial approach. These findings demonstrate that
exposure to USMB via either of the two approaches facilitated the delivery of drugs into the inner ear and that this was higher in the transcanal approach than the transcranial approach.

Since the transcanal approach is also a more-practical procedure for clinical application, the transcanal USM group was assessed in the following experiments: Gentamicin was used to further assess the efficacy of using transcanal USMB to enhance drug delivery to the inner ear. In the clinical situation, gentamicin can be injected intratympanically to treat patients with Ménière’s disease to improve the episodes of vertigo that they experience (21). In the USM group of the present experiments, 200 µL of a mixture of gentamicin (40 µg/mL) and MBs (1.40×10^7 MBs/mL) were injected into the middle ear cavity and then US sonication was performed via the transcanal approach. The RWS group only received the injection of the mixture. The control group only received the injection of gentamicin solution without MBs. Two days after the exposure to USMBs, the cochlear and vestibular tissue was harvested for analyzing the uptake of gentamicin. In parallel with phalloidin, myosin 7a, a hair cell marker, was also used to label the hair cells to determine gentamicin uptake of the hair cells in these groups. There was a marked disparity in the distribution of gentamicin between these two groups (Figure 5). The USM group exhibited robust fluorescence of gentamicin labeling in the inner and outer hair cells in all turns of the cochlea, and especially in the basal turn. In contrast, the RWS and control groups presented with weak and sparse gentamicin labeling in the basal and second turns, and no fluorescence was detected in the third turn. Compared to the RWS and
control groups, the USM group exhibited greater uptake of gentamicin in the hair cells in all
turns of the cochlea (Figure 5). In utricle and saccule of the vestibula, the USM group exhibited
the most intense fluorescence of gentamicin labeling in the hair cells. The RWS and control
groups presented with scattered labeling (Figure 6). These results demonstrate that transcanal
USMBs enhance the uptake of gentamicin by hair cells and suggests that this technique can be
applied to facilitate the administration of drugs delivered into the inner ear through the RWM.

Subsequently, a longer-term analysis of hair cell loss in the cochlea and vestibule was
performed to follow up on the enhancement of gentamicin delivery by USMBs. Two weeks
after the gentamicin treatment, the cochlear and vestibular tissues were harvested for analysis
of the hair cell loss. The number of myosin 7a-positive cells in the inner and outer hair cell
regions was smaller in the USM group than in the RWS group (Figure 7). The basal turn of the
USM group showed the severest hair cell loss. In the utricle and saccule, the USM group
exhibited a drastically reduced density of myosin 7a-positive cells and severe damage to the
stereocilium bundles in the sensory epithelium (Figure 8), whereas the RWS group presented a
greater density of myosin 7a-positive cells and less loss of stereocilia bundles in the sensory
epithelium. These results demonstrated that USMB-assisted gentamycin treatment is more
effective for vestibular ablation than is the current clinical practice. Therefore, USMB-assisted
drug delivery may represent a new option for treatment of patients with Ménière’s disease.
Finally, the presence of any auditory compromise related to this technique was investigated in order to assess its safety. The integrity of the tympanic membrane following exposure to USMB was inspected using an operating microscope. No perforation of the tympanic membrane was found in the USM group at 4 weeks after the US sonication. The loss of hair cells in the surface preparations of the organ of Corti was also investigated after exposure to USMB (Figure 9A). The results indicated that there was no significant hair cell loss in any of the three turns of the cochlea at 4 weeks following the exposure. Functional assessments of hearing showed no significant difference in the ABR threshold at any of the tested frequencies after exposure to USMBs in the USM group (Figure 9B), and no differences in ABR thresholds between the USM and RWS groups. These data suggest that the transcanal approach for exposure to USMB does not cause either structural or functional damage in the inner ear.

Discussion

The clinical application of using USMB cavitation to promote inner ear drug delivery requires evaluations of the sonoporation mechanism(s), US parameters, and the delivery methods for US sonication and MBs. Intratympanic injection is currently the most-popular method for delivering drugs into the inner ear since they can be delivered without encountering the blood-labyrinth barrier or systemic side effects, and has been used in clinical applications for many years (22). In the present study, MBs mixed with a fluorescent drug were delivered
into the middle ear cavity via a transtympanic injection, and US was then applied to the
temporal bone of the skull (transcranial approach) or the external auditory canal (transcanal
approach) to induce the cavitation of MBs and increase the permeability of the RWM in order
to enhance drug delivery. PCD was performed either directly or through the skull bone to
quantify the stable cavitation and inertial cavitation.

Figure 3 shows that the average AUCs for the inertial cavitation of MBs at dilutions of
$10 \times (1.40 \times 10^7 \text{ MBs/mL})$ and $1 \times (1.40 \times 10^8 \text{ MBs/mL})$ were significantly higher than those for
stable cavitation irrespective of whether or not the US sonication was applied through the skull
bone ($p<0.01$). Moreover, the $10 \times$ dilution of MBs provided the optimal concentration for
inertial USMB cavitation. These results are consistent with the results shown in Figures 1 and
2. Although the destruction efficiencies of MBs under US sonication applied through the skull
bone at power densities of 3 and 4 W/cm2 reached 79.1–79.6%, the duration of sonication was
3 min, which was longer than the sonication duration (1 minute) in the group with US sonication
applied through the tympanic membrane. We found that sonication at a power density of
3 W/cm2 for 1 minute in the transcanal approach and 3 minutes in the transcranial approach can
disrupt most of the MBs and induce inertial cavitation more effectively, and so these parameters
and conditions were used in the $in vitro$ and $in vivo$ experiments. However, thermal
effects of USMB cavitation were more obvious on the surface of the cranium (temperature
increase=$6.40\pm0.70^\circ\text{C}$) and in the chamber loaded with MBs (temperature
increase=2.04±0.29°C) in the transcranial approach than in the transcanal approach (temperature increase in the chamber=1.75±0.15°C). The longer duration of sonication in the transcranial approach resulted in a significant temperature increase on the surface of the cranium, which may raise safety concerns about any adverse events when applied for clinical trial. A temperature elevation of 1–1.5°C has been recommended to be applied indefinitely without concern on safety grounds (23), It thus seems unlikely that the thermal adverse effects was involved in our transcanal approach.

In 1997, the US Food and Drug Administration suggested that the use of synthetic membranes, such as polysulfone or cellulose acetate, in drug-diffusion studies involving Franz cells is suitable for assessing the performance of topical formulations when biological skin is not readily available (24, 25). This led to several studies that assessed topical drug diffusion using porous synthetic membranes (24, 26, 27). For assessment of \textit{in vitro} inner ear drug delivery, several formulations and methodologies have been investigated using a modified diffusion-cell setup with a synthetic membrane (4.5–5.0 μm pore size) (28–31). For example, in a modified \textit{in vitro} diffusion cell experiment, the synthetic membrane was regarded as akin to the RWM as it separated the donor chamber above (simulating the middle ear cavity) from the receptor chamber below (simulating the inner ear) for evaluation of intratympanic formulations for inner ear delivery (28). We therefore used synthetic cellulose membranes in the present study to mimic the tympanic membrane and the RWM and to detect the effects of
USMB on inner ear permeation. The results obtained using the 3D-printed diffusion apparatus indicated that the delivery efficiency was 4.8-fold higher in the two-synthetic-membranes model (group M2, simulating the transcanal approach) and 3.7-fold higher in the single-membrane model through the skull bone (group M1+B, simulating the transcranial approach). Therefore, the sonication in the simulated transcanal approach at 3 W/cm² for 1 minute enhanced the drug delivery by more than 29.7% compared to that in the simulated transcranial approach (with each experiment performed three times). In the small-animal experiments, the application of USMBs increased the drug delivery by approximately 2.8-fold via the transcanal approach and 1.5-fold via the transcranial approach.

While drug delivery can be facilitated using either transcanal or transcranial exposure to USMB, the transcanal approach is superior for several reasons. First, the efficiency of delivery into the inner ear was higher for the transcanal than for the transcranial approach. Second, the middle ear cavity is very small, the structure of the ear is very intricate, and the skull bone of the guinea pig is thinner than 1 mm (32). By contrast, the use of the transcranial method in the human temporal bone for inner ear drug delivery is restricted by the pneumatization of the bone, which is typically 6–7 mm thick (33, 34). A third reason is that the transcanal approach is currently regarded as the ideal route for minimally invasive ear surgery (35). Compared to the retroauricular approach, the transcanal approach offers advantages that include no skin incision, no hair loss, and a short recovery time. The administration of drugs for treating diseases of the
middle and inner ears is often accomplished using transtympanic injections via the external auditory canal (36). A fourth reason is that our immunofluorescence analysis of the gentamicin distribution in the cochlea by confocal microscopy showed that transcanal exposure to USMB clearly enhanced the uptake of gentamicin by the hair cells. Accordingly, transcanal exposure to USMB appears to be an effective, noninvasive method for delivering drugs to the inner ear and can be easily applied in clinical practice. Our assessments of its safety demonstrated intact hearing function and no significant hair cell loss in any of the three turns of the cochlea at 4 weeks following the US sonication.

Some shortcoming of the procedures applied in our study need to be overcome before translating the techniques to clinical applications. First, an intracanal incision was made in the animal in order to place the US transducer in the ear canal close to the tympanic membrane. The clinical requirement of not performing such an incision would require the size and shape of the US transducer to be customized based on the lumen of the human ear canal. Second, our technique involved repeated intratympanic injections of the mixture of drug and MBs for three times of exposure to USMB. This is associated with a risk of persistent tympanic membrane perforation, although no perforation of the tympanic membrane was found in any of our animals at 4 weeks after exposure to USMB. A rate of 1.6% was reported for persistent perforation of the tympanic membrane following multiple intratympanic steroid injections (37). Modifying the USMB cavitation settings to reduce the number of the injections may avoid this
complication, and is another important issue to investigate further. Third, during exposure to USMB, the US probe was about 5 mm from the tympanic membrane, and this space needed to be filled with saline to ensure efficient US sonication. The US transducer should be refined so that the probe can be attached to the tympanic membrane and thereby avoid the need for water infusion into the ear canal during the US sonication of the middle ear. The design for such a facilitation of inner ear drug delivery needs to be further examined.

The presence of the blood–labyrinth barrier hampers systemic drug administration to the inner ear, and so the different methods and devices for enhancing local drug delivery have been devised for improving medical therapies for inner ear diseases (38). Most of these delivery devices and drug carriers are applied via the external auditory canal. The present results suggest that the application of transcanal USMB to the middle and inner ears does not damage the inner ear or auditory responses. This study is the first to demonstrate that the noninvasive combination of US with MBs can enhance drug delivery via the external auditory canal into the inner ear. More investigations into refining this method and its mechanisms for use in clinical applications can be expected in the near future.

In conclusion, this study is the first to investigate the feasibility of transcanal and transcranial approaches when performing USMB cavitation for enhancing the delivery of drugs to the inner ear. The PCD results indicated that the inertial cavitation of USMB is significantly higher than stable cavitation irrespective of whether or not the US passes through the skull bone.
The results obtained using the 3D-printed diffusion apparatus indicated that the delivery efficiency was higher for the transcanal USMB method than the transcranial method. This is due to the skull bone of the guinea pigs might attenuate the US energy. The results obtained in the small-animal experiments suggest that applying USMB via a transcanal or transcranial approach targeting the middle ear would enhance drug delivery into the inner ear, with the transcanal approach exhibiting a higher delivery efficiency and shorter US sonication time. Moreover, the transcanal approach does not damage the inner ear or auditory responses. The present study shows that the use of noninvasive transcanal USMB for inner ear drug-delivery enhancement in further clinic applications can be expected.

Methods

Production of albumin-shelled MBs

Albumin-shelled MBs were prepared according to the procedure used in our previous studies (39, 40). Briefly, albumin-shelled MBs were generated by 2 minutes of sonication (Branson Ultrasonics, Danbury, CT, USA) of a 10-mL solution containing 140 mg of albumin (Octapharma, Vienna, Austria) and perfluorocarbon gas in physiological saline (pH 7.4, 0.9% sodium chloride). The albumin-shelled MBs had a diameter of 1.02±0.11 μm (mean±SD) and a concentration of 1.40×10⁸ MBs/mL.

Optimization of US parameters for USMB cavitation by agarose phantoms
The sonication effects on MBs in vitro were evaluated by high-frequency US imaging using a commercial animal US imaging system (Prospect, S-Sharp Corporation, New Taipei City, Taiwan) in tissue-mimicking agarose phantoms, as described previously (41). Briefly, a 2% agarose square-column phantom (10 × 20 × 20 mm³) was constructed with a 2 × 2 × 20 mm³ chamber at its center to load 400 µL of 1.4×10⁷ MBs/mL, followed by sonication through the tympanic membrane, which simulated transcanal USMB cavitation in the middle ear cavity, or through the skull bone, which mimicked transcranial US sonication.

We used a 10-mm diameter US transducer (ST2000V, Nepagene, Ichikawa, Japan) operating at 1 MHz. The power density was set at 1, 2, 3, or 4 W/cm² with a duty cycle of 50% and a pulse repetition period of 250 ms for 1 minute in the transcanal group and 3 minutes in the transcranial group. High-frequency US images were obtained using a transducer with a central frequency of 40 MHz, with axial and lateral resolutions of 30 and 60 µm, respectively (Prospect, S-Sharp Corporation, New Taipei City, Taiwan). The axial and lateral fields of view were 20 and 20 mm, respectively. Real-time B-mode imaging was performed, and the image planes were acquired with optimization of the gain and the time-gain compensation settings, which were kept constant throughout the experiments. Images were processed with custom MATLAB programs (The MathWorks, Natick, MA, USA) to evaluate the destruction efficiency. The region of interest was drawn over the entire MB-loaded chamber in two-dimensional (2D) imaging planes by the operator, the dynamic range was set at 50 dB, and the average pre- and postsonication
image intensities were measured in B-mode images.

Passive cavitation detection

Our previous studies have suggested that USMB disruption (i.e., inertial cavitation) is required for effective transdermal drug delivery (42–44). Recent studies have demonstrated that the acoustic-emission signals acquired in PCD could be used to quantify the subharmonic-frequency component and inertial cavitation dose, which represent the index of stable cavitation and inertial cavitation, respectively (45, 46). We therefore set up such a PCD system to clarify the type of cavitation that occurred in the present study (Figure 10). The transducer of a US sonoporation system and a PCD were arranged confocally using a self-made holder, with an included angle of approximately 120°, which was limited by their focal lengths and physical dimensions (47). The US parameters for MB cavitation *in vitro* were established by performing experiments at a power intensity of 3 W/cm². A polyethylene (PE) tube filled with degassed water was placed in a degassed water tank 7 mm below the PCD (measured from the US sonoporation transducer to the center of the PE tube). The total receiving time was 240 seconds and 0.5 mL of MBs solution was injected at the 60th second. During US sonication (from 60th to 180th second), the detector was a single-element spherically focused 1-MHz transducer (diameter of 12.5 mm; V303-SU, Olympus, Tokyo, Japan). The holder was mounted on a computer-controlled 2D motion stage (HR8, Nanomotion, Yokneam, Israel). The MB echoes were received by the 1-MHz transducer and then amplified by a broadband receiver (BR-640,
Retec, Warwick, RI, USA). The detected emissions were then quantified using spectrum-based energy-spectral-density analysis with MATLAB.

In vitro penetration experiments: diffusion apparatus for RWM permeation

The large volume of the Franz cells (5–10 mL) and the time-consuming procedures necessary to obtain transport parameters were inappropriate for the RWM permeation assay. To overcome these issues, we designed a 3D-printed diffusion apparatus to mimic the pathway for US sonication passing through the external auditory canal (the transcanal approach) or through the mastoid bone (the transcranial approach) to verify their cavitation effects for the USMB in the middle ear cavity when targeting the RWM for drug delivery *in vitro*. This *in vitro* diffusion-cell apparatus was constructed using an online computer-aided-design program and produced using a 3D printer (Dforce D300, Synmao Technology Enterprise, Taipei, Taiwan). A glycol-modified version of PE terephthalate filament is a thermoplastic material that was used to 3D print the diffusion apparatus in this study.

Two types of diffusion apparatus setups were designed with SolidWorks (Dassault Systèmes SolidWorks Corporation, Waltham, MA, USA), as shown in Figure 11 [the two-membranes model (group M2), simulating the transcanal approach in Figure 11, C and F, and the single-membrane model through the skull bone (group M1+B), simulating the transcranial approach in Figure 11D], which consisted of a 0.5-mL donor, an intervening cellulose membrane (1000 kDa; Orange Scientific, Braine-l’Alleud, Belgium), and 0.4-mL receiving
compartments (Figure 11, A, B, and D); and 0.5-mL donor compartments, an external membrane, 0.25-mL interval chamber (the volume was consistent with the middle ear cavity), an internal membrane, and 0.4-mL receiving compartments (Figure 11, C and F). Figure 11D shows the donor chamber in Figure 9, A and E capped by a 5 × 5 mm² skull bone.

The drug delivery effect when the RWM was not directly sonicated by US was evaluated by deviating the US transducer 20° from the center (group M1-20°), as shown in Figure 11B. The parafilm (Pechiney Laboratory Safety Products and Apparel, Chicago, IL, USA) occluded the outside seam of the apparatus in order to guarantee that the system was sealed. At the beginning of the experiments, each donor compartment was completely filled with the receiving medium consisting of a 500-μL mixture of biotin-FITC (40 μg/mL; Anaspec, Fremont, CA, USA) and MBs (1.40×10⁷ MBs/mL), and the probe of the sonoporation system was applied to the donor cells. The 1-MHz US transducer of the sonoporation system positioned 5 mm from the top of the membrane provided sonication at a power density of 3 W/cm² (acoustic pressure=0.266 MPa) for 1 minute in the single-membrane model (group M1 and group M1-20°) and two-membrane model (group M2), and for 3 minutes in group M1+B. Samples obtained from the receiving compartment were analyzed by a fluorometer (Fluoroskan Ascent FL, ThermoLab Systems, Helsinki, Finland).

Animal study and surgical procedures

The destructive effects of the USMB through the real tympanic membrane or bony plate
were examined by harvesting skull bone and the bilateral tympanic membranes with the
surrounding tympanic bone from two CO2-gas sacrificed guinea pigs. These harvested materials
were then used in an experiment of high-frequency US imaging of a tissue-mimicking agarose
phantom (Figure 12A). A total of 30 pigmented male guinea pigs (weighing 250–350 g) with a
normal Preyer reflex were assigned to the transcanal and transcranial arms of the experiments.
Each arm was allocated to three groups: the USMB treatment (USM), round-window soaking
(RWS), and gentamycin only (GM) groups. Anesthesia was induced with an intramuscular
injection of ketamine (Imalgene, Merial, Lyon, France) at 80 mg/kg and xylazine (Rompun,
HealthCare; Leverkusen, Germany) at 10 mg/kg and the animals were kept warm with a heating
pad for all subsequent manipulations. In the transcanal arm animals, a small incision was made
in the cartilaginous portion of the external auditory canal, and a speculum was inserted into the
canal to provide a better view of the tympanic membrane and the manipulation approach (Figure
12B). For USMB treatment groups, 200 μL of a mixture of gentamicin (40 mg/mL; Biological
Industries, Kibbutz Beit-Haemek, Israel) and MBs (1.40×10⁷ MBs/mL) was injected through
the antero-inferior region of the tympanic membrane into the middle ear cavity using a syringe
with a 25-gauge needle. The US transducer was then inserted into the speculum and positioned
5 mm from the tympanic membrane. The space between the tympanic membrane and the probe
was filled with saline as a conductive medium, followed by a 1 minute application of US
sonication targeting the middle ear cavity at a power density of 3 W/cm² (acoustic
pressure=0.266 MPa). These procedures were performed under an operating microscope (F-170, Carl Zeiss, Jena, Germany). At the end of the first course of US exposure, the solution mixture in the middle ear cavity was removed and replaced with a fresh mixture of gentamycin and MBs for the second course of US exposure. Following a third course of USMB treatment, the gentamycin/MBs mixture was retained in the middle ear cavity for 2 or 14 days, according to the experimental design. For control groups, the middle ear cavity was filled as above with 200 μL of a mixture of either gentamicin and MBs (for RWS group) or gentamicin and normal saline (for the GM group) and the mixture was allowed to soak the RWM for the same total duration as was used for the USM treatment. For experimental groups in the transcranial arm, the US exposure duration was extended to 3 minutes for each USMB course and a total of 3 courses was administered, as in the transcanal arm. The in vivo efficiency of USMB treatment of the RWM via the transcanal and transcranial arms was tested by replacing the mixture of gentamicin/MBs with biotin-FITC (40 μg/mL) and MBs (1.40×10⁷ MBs/mL), and the biotin-FITC/MBs mixture in the middle ear cavity was removed with a needle syringe at the end of the third course of USMB treatment.

After euthanizing guinea pigs with CO₂ gas, the inner ear perilymph was immediately collected. The tympanic bulla was removed and a 10-μl microtip on a pipette was gently inserted through a cochleostomy inferior to the RWM for perilymph aspiration. The collected samples were then centrifuged immediately, stored at −80°C, and later processed for
Auditory brainstem response recording

The auditory function of the guinea pigs was assessed by recording auditory brainstem responses (ABRs) as described previously (48). The animals were anesthetized and kept warm with a heating pad in a sound-attenuating chamber for the duration of the recording. Subdermal needle electrodes were inserted at the vertex (positive), below the pinna of the ear (negative), and at the back (ground) of the guinea pigs. Specific stimuli (clicks, and 8-, 12-, 16-, 20-, 24-, and 32-kHz tone bursts) were produced by using SigGen software (Tucker-Davis Technologies, Gainsville, FL, USA) and delivered monaurally to the external auditory canal via an insert earphone. The average responses from 1024 stimuli at intensities ranging from 5 to 90 dB SPL for each frequency were collected by decreasing the sound intensity in 5-dB steps. The resulting ABR threshold was defined as the lowest intensity at which a reproducible deflection in the evoked response trace could be recognized.

Cochlear surface preparation and immunofluorescence analysis of gentamicin uptake

Guinea pigs were euthanized and their temporal bones were quickly removed. The cochleae were fixed by the intrascalar perfusion of 4% paraformaldehyde in PBS for 1 hour at room temperature. The tissues were rinsed with PBS, and the bone surrounding the organ of Corti was removed. The organ of Corti were then carefully dissected and immersed in the same fixative overnight. The tissues were then incubated with anti-myosin 7a polyclonal antibodies.
(1:100; NB120-3481, Novus Biologicals, Littleton, CO, USA) for 2 hours. After three washes with PBS, the tissues were incubated with Alexa-Fluor-555-conjugated goat anti-rabbit antibodies (1:500; A21428, Thermo Fisher Scientific, Eugene, OR, USA) for 1 hour. Samples were incubated with Alexa-Fluor-488-conjugated phalloidin (A12379, Thermo Fisher Scientific) for 30 minutes at room temperature, rinsed with PBS, mounted in DAPI Fluoromount-G® mounting medium (SouthernBiotech, Birmingham, AL, USA), and covered with a coverslip for the analysis. The flat surface preparation of the organ of Corti was examined over its entire length. For gentamicin immunofluorescence, the fixed cochlear tissues were incubated with PBS containing 0.3% Triton X-100 for 30 minutes and then blocked with BlockPRO blocking buffer (Visual Protein Biotechnology, Taipei, Taiwan) for 60 minutes at room temperature. The tissues were then incubated with anti-gentamicin monoclonal antibodies (1:100; 16101, QED Biosciences, San Diego, CA, USA) and anti-myosin 7a polyclonal antibodies (1:100; NB120-3481, Novus Biologicals) for 2 hours. After three washes with PBS, the tissues were incubated with Alexa-Fluor-488-conjugated donkey anti-mouse antibodies (1:200; A21202, Thermo Fisher Scientific) and Alexa-Fluor-555-conjugated goat anti-rabbit antibodies (1:500; A21428, Thermo Fisher Scientific) for 1 hour. Then samples were incubated with Alexa-Fluor-633-conjugated phalloidin (1:100; A22284, Thermo Fisher Scientific) for 30 minutes at room temperature, rinsed with PBS, mounted in DAPI Fluoromount-G® mounting medium, and covered with a coverslip. The fluorescence images were obtained using
a confocal laser scanning microscope (Zeiss LSM 880, Carl Zeiss, Jena, Germany).

Statistical analysis

The obtained data were analyzed statistically using two-tailed Student’s \(t \)-test. Different groups were compared using one-way ANOVA followed by Tukey’s multiple-comparisons test. A probability value of \(p < 0.05 \) was considered indicative of a significant difference.

Study approval

This animal study was approved by the Institutional Animal Care and Use Committee of the National Defense Medical Center, Taipei, Taiwan. The pigmented male guinea pigs (weighing 250–350 g) were used for experiments and cared for in accordance with protocols approved institutionally.

Author Contributions

PYW, YCL, and HW performed the experiments. AHL and CPS wrote the manuscript with support from CHW. AHL, CPS, HKC, and CHW participated in planning and performing the experiments. AHL, CPS, PYW, and YCL participated in data analysis and interpretation. CPS, AHL, CHW, HLL, and HCC made substantial contributions to the conception and design of the research, data collection, and the editing of the manuscript. All of the authors have reviewed the manuscript and approved its final version.
Acknowledgments

This work was supported in part by grants from the Ministry of Science and Technology, Taiwan (MOST106-2221-E-011-043-MY3 to AHL, MOST107-2314-B-663-001-MY3 to CHW, and MOST107-2314-B-016-027 and MOST108-2314-B-016-038 to CPS), the Tri-Service General Hospital (TSGH-C107-009 to CHW and TSGH-C108-011 to CPS), the Taichung Armed Forces General Hospital (108A42 to CHW), the National Taiwan University of Science and Technology-Tri-Service General Hospital Joint Research Program (NTUST-TSGH-108-01 to AHL), the Medical Affairs Bureau Ministry of National Defense (MAB-108-005 to CHW), and the Teh-Tzer Study Group for Human Medical Research Foundation (A1041001-2 to CHW).

References

Figures and figure legends

Figure 1. High-frequency US images of MBs before and after US sonication. (A–E)

Images were obtained following application of US at power densities of 1, 2, 3, and 4 W/cm² for 1 minute. (F) Quantification of the signal intensities. Multigroup comparisons using one-way ANOVA, followed by post hoc Tukey’s tests. Values are expressed as mean ± SD (n = 5 per group). US, ultrasound; MBs, microbubbles. *p<0.05, **p<0.01, ***p<0.001, #p<0.001 relative to control group; one-way ANOVA followed by Tukey’s multiple-comparisons test and two-tailed Student’s t-test.
Figure 2. High-frequency US images of MBs before and after US sonication. (A–E)

Images were obtained following application of US at power densities of 1, 2, 3, and 4 W/cm² for 3 minutes. (F) Quantification of the signal intensities. Multigroup comparisons using one-way ANOVA, followed by post hoc Tukey’s tests. Values are expressed as mean ± SD (n = 5 per group). US, ultrasound; MBs, microbubbles. *p<0.05, **p<0.01, ***p<0.001, #p<0.001 relative to control group; one-way ANOVA followed by Tukey’s multiple-comparisons test and two-tailed Student’s t-test.
Figure 3. (A) Energy spectra acquired from PCD during US sonication for two dilutions of MBs. (B) Energy spectra acquired from PCD during US sonication through the skull bone for two dilutions of MBs. (C) Quantification of the energy density of stable cavitation and inertial cavitation in panels A and B (n = 7 per group). Data are mean ± SD values. PCD, passive cavitation detection; US, ultrasound; MBs, microbubbles. *p<0.05, **p<0.01, ***p<0.001; two-tailed Student’s t-test.
Figure 4. (A) *In vitro* biotin-FITC concentrations in the four experimental groups (M1, M1-20°, M2, and M1+B) with the 3D-printed diffusion apparatus \((n=10)\). (B) *In vivo* biotin-FITC concentrations in the perilymphatic fluid of the inner ear of the USM and RWS groups in the transcanal and transcranial arms \((n=4)\) \((^*p<0.05, ^{***}p<0.001)\). Data are mean and SD values; two-tailed Student’s *t*-test.
Figure 5. Exposure to USMBs enhances the cellular uptake of gentamicin in the cochlea.

Samples were obtained from the cochleae 2 days after gentamycin treatments. Representative confocal microscopic images of indirect immunofluorescence staining show stronger localization of gentamycin uptake (green) in the USM group than in the RWS and control (gentamicin treatment without MBs) groups in the basal, second, and third turns. Four times of this experiments are conducted. Labeling: myosin 7a, cell bodies (red); phalloidin, stereocilia bundles (magenta); DAPI, nuclei (blue). Scale bar = 50 µm. USM, ultrasound microbubble treatment; RWS, round window soaking; GM, gentamycin.
Figure 6. Exposure to USMBs enhances the cellular uptake of gentamicin in the utricle and saccule. Samples were obtained from the vestibule end organs 2 days after gentamycin treatments. Representative confocal microscopic images show the localization of gentamycin uptake (green) by indirect immunofluorescence staining. Four times of this experiments are conducted. Labeling: myosin 7a, cell bodies (red); phalloidin, stereocilia bundles (magenta); DAPI, nuclei (blue). Scale bar = 50 µm. USM, ultrasound microbubble treatment; RWS, round window soaking; GM, gentamycin.
Figure 7. Exposure to USMB leads to a severer hair cell loss in the basal and second turns of the cochlea. Samples were obtained from the cochleae 2 weeks after gentamycin treatments. Representative confocal microscopic images demonstrate fewer cells stained by myosin 7a in the USM group than the RWS group in the basal turn and second turn. Four times of this experiments are conducted. Labeling: phalloidin, stereocilia bundles (green); myosin 7a, cell bodies (red); DAPI, nuclei (blue). Scale bar = 50 µm.
Figure 8. Exposure to USMB leads to a severer hair cell loss in the utricle and saccule of the vestibule. Samples were obtained from the vestibule 2 weeks after gentamycin treatments. Representative confocal microscopic images demonstrate that cells stained by myosin 7a in the utricle and saccule from the USM group are diminished more than the RWS group. Four times of this experiments are conducted. Labeling: phalloidin, stereocilia bundles (green); myosin 7a, cell bodies (red); DAPI, nuclei (blue). Scale bar = 50 µm.
Figure 9. Hearing assessment and evaluation of the integrity of cochlear sensory epithelium in guinea pigs 28 days after ultrasound microbubble (USMB) treatments. (A) Representative images of cochlear surface preparations by immunofluorescence staining shows the nuclei (blue, DAPI), filamentous actin (green, phalloidin), and cell bodies (red, myosin 7a). Four times of this experiments are conducted. Scale bar = 50 μm. (B) The auditory brainstem response (ABR) threshold recording with click and tone-burst stimuli before (day 0) and at a one-month follow up after USMB treatments. The results are expressed as the mean ± standard error of the mean (SEM), with n = 4 for each bar; two-tailed Student’s t-test. DAPI, 4,6-diamidino-2-phenylindole; RWS, round window soaking; USM, ultrasound microbubble treatment.
Figure 10. The passive cavitation detection (PCD) setup for measuring USMB cavitation.
Figure 11. The 3D-printed apparatus mimics the pathway for US sonication passing through *in vitro* when the US probe is placed in the external auditory canal or on the skull, passing through the tympanic membrane and the RWM when the US probe is placed in the external auditory canal, or passing through the bone and the RWM when the probe is placed on the skull *in vitro*. (A) Single-membrane model (group M1). (B) US transducer deviated 20° from the center in the single-membrane model (group M1-20°). (C) A two-membranes model simulating the transcanal approach (group M2) involving placing the US probe in the external auditory canal. (D) A bony plate plus one-membrane model simulates the transcranial approach (group M1+B), by placing the US probe on the skull. SolidWorks designs of the custom 3D-printed single-membrane model (E) and the two-membranes model (F).
Figure 12. The *ex vivo* and *in vivo* experimental settings in the guinea pigs. (A) Photographs of the tympanic membrane taken from guinea pigs and covered on the top of a chamber (enlarged view) in the tissue-mimicking agarose phantoms. (B) Intraoperative photograph of transcanal US sonication implemented by placing the US probe in the external auditory canal, sonicating through the tympanic membrane, and causing USMB cavitation in the middle ear cavity of the guinea pigs. The tympanic membrane can be macroscopically visualized (enlarged view) with the aid of a speculum.
Supplemental data

Table. Temperature measurements in agarose phantom when performing US-induced microbubble (MB) disruption.

<table>
<thead>
<tr>
<th>Area</th>
<th>Power (/cm²)</th>
<th>1 W</th>
<th>2 W</th>
<th>3 W</th>
<th>4 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcanal method (1 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamber loaded with MBs</td>
<td>1.25±0.25</td>
<td>1.70±0.10</td>
<td>1.75±0.15</td>
<td>1.80±0.20</td>
<td></td>
</tr>
<tr>
<td>Transcranial method (3 mins)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above skull bone</td>
<td>3.90±0.60</td>
<td>4.60±0.70</td>
<td>6.40±0.70</td>
<td>8.80±1.10</td>
<td></td>
</tr>
<tr>
<td>Under skull bone</td>
<td>1.90±0.30</td>
<td>3.00±0.40</td>
<td>4.90±0.50</td>
<td>5.20±0.90</td>
<td></td>
</tr>
<tr>
<td>Chamber loaded with MBs</td>
<td>1.10±0.40</td>
<td>1.58±0.28</td>
<td>2.04±0.29</td>
<td>2.30±0.60</td>
<td></td>
</tr>
</tbody>
</table>