Pharmacological chaperone action in humanized mouse models of MC4R-linked obesity

Patricia René, … , Denis Richard, Michel Bouvier


MC4R mutations represent the largest monogenic cause of obesity, resulting mainly from receptor misfolding and intracellular retention by the cellular quality control system. The present study aimed at determining whether pharmacological chaperones (PC) that restore folding and plasma membrane trafficking by stabilizing near native protein conformation, may represent valid therapeutic avenues for the treatment of melanocortin type 4 receptor (MC4R) linked obesity. To test the therapeutic PC potential, we engineered humanized MC4R mouse models expressing either the wild type (WT) human MC4R or a prevalent obesity-causing mutant (R165W). Administration of a PC able to rescue cell surface expression and functional activity of R165W-hMC4R in cells, restored the anorexigenic response of the R165W-hMC4R obese mice to melanocortin agonist, providing a proof-of-principle for the therapeutic potential of MC4R-targetting PC in vivo. Interestingly, the expression of the WT-hMC4R in mice revealed lower sensitivity of the human receptor to alpha-melanocyte-stimulating hormone (α-MSH) but not β-MSH or MTII, resulting in a lower penetrance obese phenotype in the WT-hMC4R versus R165W-hMC4R mice. In conclusion, we created two new obesity models, one hypomorph highlighting species differences, and one amorphic that provides a pre-clinical model to test the therapeutic potential of PC to treat MC4R-linked obesity.

Find the latest version:
https://jci.me/132778/pdf
Pharmacological chaperone action in humanized mouse models of MC4R-linked obesity

Patricia René¹, Damien Lanfray², Denis Richard² and Michel Bouvier¹

¹Département de Biochimie et de Médecine Moléculaire, Institute for Research in Immunology and Cancer, Université de Montréal, 2950 chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada.

²CRIUCPQ, Université Laval, 2725, Chemin Sainte-Foy, Québec, G1V 4G5 Canada.

PR and DL have contributed equally to this work

D.R. and M.B. are co-corresponding authors

Address correspondence to: Michel Bouvier, Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, 2950 chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada. E-mail: michel.bouvier@umontreal.ca (M.B.), phone number: 514-343-6319 and Denis Richard, CRIUCPQ, Université Laval, 2725 Chemin Sainte-Foy, Québec, G1V 4G5, Canada. Email: denis.richard@criucpq.ulaval.ca (D.R.), phone number: 418-656-8711.

Competing interests

This study was performed as collaboration between the academic laboratories of M.B. and D.R. and scientists at Pfizer. Pfizer financially supported the study through a research contract to MB in collaboration with IRICoR. The authors have no competing financial and/or non-financial interests to declare in relation to the work described.
Abstract:

MC4R mutations represent the largest monogenic cause of obesity, resulting mainly from receptor misfolding and intracellular retention by the cellular quality control system. The present study aimed at determining whether pharmacological chaperones (PC) that restore folding and plasma membrane trafficking by stabilizing near native protein conformation, may represent valid therapeutic avenues for the treatment of melanocortin type 4 receptor (MC4R) linked obesity. To test the therapeutic PC potential, we engineered humanized MC4R mouse models expressing either the wild type (WT) human MC4R or a prevalent obesity-causing mutant (R165W). Administration of a PC able to rescue cell surface expression and functional activity of R165W-hMC4R in cells, restored the anorexigenic response of the R165W-hMC4R obese mice to melanocortin agonist, providing a proof-of-principle for the therapeutic potential of MC4R-targetting PC in vivo. Interestingly, the expression of the WT-hMC4R in mice revealed lower sensitivity of the human receptor to α-melanocyte-stimulating hormone (α-MSH) but not β-MSH or MTII, resulting in a lower penetrance obese phenotype in the WT-hMC4R versus R165W-hMC4R mice. In conclusion, we created two new obesity models, one hypomorph highlighting species differences, and one amorphic that provides a pre-clinical model to test the therapeutic potential of PC to treat MC4R-linked obesity.
Introduction

Severe obesity is generally considered as a multifactorial disease caused by both genetic and environmental factors resulting in an energy imbalance. The predisposition to obesity is largely polygenic but can also be monogenic (1, 2). Among these, mutations occurring in the melanocortin type 4 receptor (MC4R), a key component of the central regulation of energy homeostasis, have been associated with severe familial obesity and reported as the most common monogenic cause of childhood obesity (3-6). The prevalence of MC4R mutations in obese people vary significantly in frequency (1-6% of the obese patients) depending on the ethnic origin, the severity of obesity, and the age of obesity onset of the population considered (7) Although some subjects are homozygous for MC4R mutations, the vast majority are heterozygous. The mode of inheritance is defined as autosomal codominant with modulation of expression and of phenotype penetrance (6).

More than 150 distinct mutations causing early onset obesity have so far been identified and, from those characterized, a majority causes protein misfolding leading to the retention of the receptor by the cell quality control system, thus preventing its normal trafficking to the cell surface (8). These defects belong to a growing class of so called ‘conformational mutations’ that affect members of different protein families, including many GPCRs (9). Several years ago, cell permeant pharmacologically selective ligands that bind misfolded proteins and promote their proper folding were identified and called pharmacological chaperones (PCs), (9, 10). Such compounds favor the escape of mutant proteins that are otherwise retained in the endoplasmic reticulum or Golgi by the quality control system of the cell as a consequence of their improper folding. By penetrating the cell membrane and binding to the misfolded receptor these PCs stabilize a near native conformation, allowing their trafficking to the plasma membrane. In many cases, such rescued receptors maintained their capacity to engaged their cognate signaling pathway.
thus restoring function. PCs therefore represent an attractive therapeutic avenue for the treatment of ‘conformational diseases’. In most cases, PCs bind the orthosteric binding pocket of the targeted receptor. Compounds with antagonist activity are generally preferred over agonists as they do not promote desensitization or down-regulation. This implies that to be therapeutically active, the pharmacokinetic properties of the PCs must allow their dissociation from the receptor allowing binding of the natural agonist. The therapeutic efficacy of such PC approach on GPCRs was demonstrated in vivo in a hypogonadotropic hypogonadal mouse model harboring a misfolded gonadotropin-releasing hormone receptor (GnRHR) (11) and in a pilot clinical trial for the treatment of nephrogenic diabetes insipidus targeting mutant forms of vasopressin type 2 receptor (12). Development of therapeutic strategies targeting rare forms of early onset obesity would represent a significant advance in pediatric obesity, especially when considering that current dietary approaches and pharmacotherapy are largely ineffective and that bariatric surgery is a rather invasive intervention that is not recommended in children or teenagers (13-17). Our previous study in cultured cells demonstrated the efficacy of membrane-permeant MC4R-selective PCs to restore cell surface expression and function of MC4R mutant forms, opening the way towards the development of a therapy targeting patients with MC4R-related obesity (18).

The only mouse models currently available and mimicking MC4R-deficiency are MC4R knockout models that do not allow the assessment of therapeutic candidates acting as PCs, which require models producing misfolded receptors that are retained intracellularly. To address the therapeutic value of pharmacological chaperones in vivo to treat MC4R-linked obesity, we generated humanized MC4R knock-in mouse lines expressing either the wild-type (WT) or an obesity-causing mutant form of the human MC4R (hMC4R) in the receptor’s mouse locus. We inserted the naturally-occurring mutation Arg165Trp (R165W), which was previously described
as retained intracellularly in heterologous expression systems (8) and was found to be one of the prevalent mutations (number of probands) found in severely obese patients (19-23). This mutant form of the receptor was chosen since we previously found that PCs could efficiently rescue both its cell surface expression and function in cellular systems (18).

Here, we report the development of two mechanistically distinct MC4R-linked obesity models. Mice carrying the WT allele of the human MC4R (WT-hMC4R) in place of the mouse MC4R (mMC4R) gene developed a “hypomorphic” phenotype leading to obesity as a result of a lower sensitivity of the human receptor to α-MSH as compared to the mouse receptor. In contrast, the obesity observed in mice carrying the mutant R165W-hMC4R allele in place of the mMC4R gene is due to the insertion of an amorphic allele, the presence of R165W mutation leading to the expression of a non-functional receptor in vivo. We used this model, mimicking features of human conformational MC4R obesity, to assess in vivo the potential efficacy of our MC4R selective PC candidate, PC UM0130866. Per os administration of this PC, promoted the restoration of the anorexic effect of the MC4R agonist, melanotan-II (MTII), in mice harboring the obesity-causing mutant form R165W-hMC4R but not in the loxTB MC4R null mice. In addition to provide two mechanistically distinct mouse models for MC4R-linked obesity, the study presents the first in vivo demonstration of MC4R-specific PC action, paving the way for the development of a targeted therapy for severely obese patients harboring MC4R mutations.
Results

Generation and validation of humanized MC4R Knock-in mouse models

To explore the potential of a PC therapeutic approach in the context of MC4R-deficiency in humans, we generated “knock-in” (KI) mouse lines expressing the WT or an obesity-causing mutant form of the human MC4R (hMC4R) in the receptor’s mouse locus. We used homologous recombination in ES cells to replace the mouse mc4r coding gene by either the human WT MC4R tagged at the N-terminus with a c-myc epitope or a mutant form of the human MC4R carrying an obesity-linked mutation at position R165=>W in the hMC4R coding sequence tagged at the N-terminus with three tandem sequences of the HA epitope. To facilitate the detection of the transgene expression, both forms of the human MC4R were fused in frame at the C-terminus with the Venus fluorescent protein flanked by loxP sites. A detailed description of the knock-in strategy is presented in supplemental Figure 1A and supplemental Methods. Homologous recombination at the receptor mouse locus, was confirmed by Southern blot analysis (Supplemental Figures 1A and 1B) and validated by PCR through the genotyping of the mice.

Immunohistochemistry on frozen brain sections in heterozygous WT-hMC4R and R165W-hMC4R mice using a GFP antibody revealed Venus expression level in paraventricular nuclei (PVN) of the hypothalamus known to endogenously express the mouse melanocortin 4 receptor (Figure 1A). We observed a more intense GFP immunoreactivity for WT-hMC4R-expressing neurons compared to R165W-hMC4R-expressing neurons. No labeling with the GFP antibody was detected in non-transgenic littermates (NTG) (Figure 1A, left panel).

To compare the labeling profile of the transgenic and the endogenous MC4R expression, we also tested a specific anti-MC4R antibody directed against an epitope conserved in human and mouse MC4R sequence located in the extracellular N-terminus (24). As shown in Figure 1B and
1C, we observed the same labeling pattern in homozygous mice carrying either the WT- or the mutant-hMC4R allele as the one observed in non-transgenic mice. Immuno-labellings are illustrated for the paraventricular nucleus (PVN), the ventromedial hypothalamus Medial Pre-Optic Area (MPOA), the Medial Amygdala (MeA) and the Mesencephalic Periaqueduct Gray (PAG) that endogenously expressed MC4R (25-27). No labeling with this anti-MC4R antibody was detected in LoxTB MC4R null mice (Figure 1B, right panel), validating its specificity against MC4R.

Moreover, we performed quantitative RT-PCR on hypothalamus extracts from hMC4R KI mice and non-transgenic littermates. As expected, we measured the same amount of MC4R mRNA in the three genotypes, indicating that the hMC4R transgene allele is expressed at the same level as the mouse endogenous mc4r allele (see Supplemental Table 1).

To assess the functionality of the WT and mutant forms of the human MC4R in the transgenic mice, the food intake of animals carrying these alleles was monitored during the nocturnal cycle 4 hours following the icv administration of the melanocortin agonist, melanotan II (MTII), in the lateral ventricle. As shown in Figure 1D (left panel), MTII injection inhibited food intake in homozygous mice carrying the WT-hMC4R allele as efficiently as in their non-transgenic littermates, demonstrating that the tagged version of WT-hMC4R allele is functional in vivo. As expected, no significant inhibition of food intake was observed post-MTII administration in either homozygous LoxTB MC4R null mice (28) (Figure 1D, right panel) or in homozygous R165W-hMC4R mice (Figure 1D, middle panel), demonstrating that the anorexigenic effect of MTII is MC4R-dependent and that the naturally occurring human variant R165W-hMC4R is defective when expressed in mice as previously reported in cell-based assays (18).
Both humanized mouse models develop obesity

Since both knock-in mouse models express the transgenic receptor but differ regarding the allele functionality, we studied the evolution of their phenotype in comparison to their respective non-transgenic littermates carrying the normal mouse allele.

First, we monitored body weight gain weekly in offspring fed with regular chow (Figure 2A and B). By 5 weeks of age, both males and females homozygous hMC4R mice, carrying either the WT-hMC4R or the R165W-hMC4R allele were significantly heavier than their non-transgenic littermates. In heterozygous mice, the onset of increased weight gain differed between genotypes and gender. Whereas WT-hMC4R heterozygous male mice showed a significant increase in weight gain only at 12 weeks of age, heterozygous R165W-hMC4R male mice became heavier than their non-transgenic littermates as early as at 7 week old. The difference was even more striking in females since no significant weight gain difference was observed between heterozygous WT-hMC4R females and their littermates, even at the latest age examined, while R165W-hMC4R heterozygous females became significantly heavier than their non-transgenic siblings starting at 11 week old. These observations reveal that despite having a functional receptor, mice carrying the WT-hMC4R allele develop obesity on regular chow diet but differ from mice carrying the R165W-hMC4R allele both in the onset of obesity and the penetrance of the phenotype, as seen in male and female heterozygotes, respectively. These discrepancies might reflect phenotypes resulting from haploinsufficiency in case of R165W-hMC4R heterozygous mice compared to a possible hypomorphic allele in the case of WT-hMC4R heterozygous mice.

Since MC4R plays a pivotal role in the regulation of food consumption, we next assessed whether the increased weight gain was associated with increased feeding. Measurement of food intake at 19-20 weeks during dark and light phases (Figure 2, C-F) revealed that for homozygous
animals carrying either the WT-hMC4R or the R165W-hMC4R allele, significant increase in food intake compared to non-transgenic littermates was observed in the dark phase (Figure 2, C and D). However, food intake was significantly increased during the light phase only in R165W-hMC4R homozygous male mice (Figure 2, E), again indicating differences between the two models. Consistent with a greater penetrance of the phenotype in the R165W-hMC4R carrying animals, the daily averaged food intake was found to be 57% greater than their non-transgenic littermates for the R165W-hMC4R homozygous male as compared to a 47% increase for the WT-hMC4R homozygous males. No significant change in daily food intake was observed for any of the heterozygous mice when compared to their respective littermates during the period examined. Taken together, the data reveal hyperphagia for both knock-in hMC4R mouse models with a slightly more prominent effect in the R165W-hMC4R mice, consistent with a contribution of an increased food intake in the obesity phenotype, particularly in the homozygotes.

Consistent with the increased linear growth previously observed in both human with MC4R deficiency (29) and in MC4R null mouse (30), an increase in axial length was observed in male and female homozygotes and heterozygotes carrying either hWT or hR165W alleles (Figure 2, G and H). Also consistent with the phenotypes reported in MC4R null mice, whole blood glucose was found to be significantly higher in both WT-hMC4R and R165W-hMC4R homozygous lines for the two genders in fasted animals at 17 weeks old (Figure 2, I and J) (31).

Taken as a whole, these data show that the insertion of either WT- or R165W-hMC4R in the mouse MC4R locus lead to two obesity models that recapitulate several of the characteristics observed in obese patients with MC4R deficit, albeit with a modestly lower penetrance for the WT human allele. Although this was expected for the R165W-hMC4R mice, it was unanticipated for the mouse expressing the WT-hMC4R.
**WT-hMC4R homozygous mice are less sensitive to α-MSH**

Since homozygous mice carrying WT-hMC4R allele appeared as hypomorph despite having a functional receptor (as revealed by the normal response to MTII; see Figure 1C), we assessed the sensitivity of mice carrying the WT-hMC4R allele to the natural agonists of the receptor, the melanocortins. To directly test whether human and mouse MC4R orthologs may have different sensitivity to endogenous melanocortins, we monitored the dose-dependent effect of α- and β-MSH on food intake in homozygous WT-hMC4R mice and non–transgenic littermates (Figure 3A). The melanocortins were also administered to the loxTB MC4R null mice used as negative controls (Figure 3B). As shown in Figure 3A, homozygous WT-hMC4R mice and their littermates had identical responses to 100 pmol/μl of α-MSH. However, the lower dose of α-MSH (20pmol/μl) was ineffective in WT-hMC4R while still significantly inhibiting food intake in their non-transgenic littermates harboring the mouse allele. In contrast, similar anorexic responses to β-MSH (endogenously secreted in humans but not in mice due to the absence of the proper cleavage site in the mouse pro-opiomelanocortin (32, 33)) were observed for both homozygous WT-hMC4R mice and their non-transgenic littermates at both 100 and 20pmol/μl. The absence of anorexic response in homozygous loxTB MC4R null mice with either ligand indicates that the effect measured in WT-hMC4R Knock-in mice is MC4R mediated (Figure 3B). Altogether, those results strongly suggest that, although fully responsive to MTII and β-MSH, the human receptor is less sensitive to α-MSH, pointing to a species difference in responsiveness to the endogenous melanocortins.

To test this possibility, we measured the potency of α-MSH to activate Gs upon binding to either mM4R or hMC4R using a BRET-based biosensor directly monitoring Gs activation.
(Supplemental Figure 2). We observed that the potency of α-MSH on mMC4R to activate Gs is 14 fold higher than on hMC4R (pEC50: 7.48 ± 0.15 (hMC4R) vs 8.64 ± 0.22 (mMC4R)). These data support the difference in the sensitivity of the human vs mouse receptor to α-MSH and may explain the development of an obese phenotype in the WT-hMC4R mice.

Central chronic infusion of MTII reverses overweight and hyperphagia in homozygous WT-hMC4R mice

To test whether the increase in food intake and weight gain in WT-hMC4R mice is due to a decrease in melanocortin agonist tone resulting from the hypomorphism of the WT human allele, we monitored the effect of chronic central administration of MTII. Upon chronic central MTII stimulation, cumulative food intake in homozygous WT-hMC4R mice is significantly less at day 5, 6 and 7 comparatively to animals receiving cerebrospinal fluid (aCSF) only (Figure 4A). As expected, no effect was seen in the loxTB MC4R null mice (Figure 4B). Chronic administration of MTII also resulted in a significant body weight loss in WT-hMC4R but not in loxTB MC4R null mice (Figure 4C). Taken together, these data suggest that the primary cause of obesity in WT-hMC4R mice is a decrease in MC4R agonist tone reflecting species differences in MC4R receptor relative to endogenous melanocortins, thus providing a new model of MC4R-linked obesity.

R165W-hMC4R homozygous mice have impaired glucose tolerance and energy expenditure

Given the role of MC4R in the adaptive metabolic response to excess caloric consumption, we monitored energy expenditure by measuring 24h-O2 consumption (VO2) in male and female R165W-hMC4R mice at different ages (Figure 5A). The data were expressed as a function of the lean mass to take into account the increased lean mass observed in the MC4R deficient mice
compared to their non-transgenic littermates (28). No significant change in VO2 consumption was observed in either R165W-hMC4R heterozygous or homozygous obese male mice when compared to their non-transgenic age-matched littermates. In females, no difference was observed for heterozygous R165W-hMC4R mice but a reduced VO2 consumption was found for homozygous R165W-hMC4R females at 9 and 16 weeks of age. These data indicate that R165W-hMC4R mice are not able to adjust their energy expenditure to their increased food intake, most likely contributing to their obese phenotype as previously observed for the MC4R KO mice (31).

The ability of the R165W-hMC4R mice to regulate their glycemia was also assessed using glucose and insulin tolerance tests. As shown in Figure 5B, an impaired response to insulin injection was observed in both male and female homozygous R165W-hMC4R mice measured at 17-18 and 27-28 weeks, indicative of insulin resistance. When considering the glucose tolerance test, whereas a sustained hyperglycemia was observed at all ages tested for the female homozygous R165W-hMC4R mice, such significant hyperglycemia was observed only at 9 weeks of age for the males, their response to glucose returning to normal at 16-17 and 26-27 weeks of age (Figure 5C). These data suggest that mice carrying the R165W allele are hyperglycemic most likely because of developing insulin resistance, which is consistent with the phenotype previously reported for MC4R null mice (31).

**Characterization of the PC candidate UM0130866**

To test the therapeutic potential of the PC approach in the context of MC4R deficiency, we selected a PC candidate, UM0130866, identified by screening of a compound library that was optimized by medicinal chemistry in collaboration with Pfizer scientists and the medicinal chemistry platform of IRIC. As shown in Supplemental Table 2, UM0130866 binds to MC4R with high
affinity (Ki: 73nM) and a selectivity of 245, 16 and 8 fold over MC1R, MC3R and MC5R, respectively. When tested on the ability of WT-hMC4R to promote cAMP production in response to NDP-α-MSH, UM0130866 was found to be a full antagonist with a half maximal inhibitory concentration (IC\textsubscript{50}) of 33nM (Figure 6A). The PC activity of this MC4R-selective antagonist in cell-based assays is illustrated by its ability to rescue cell surface expression of R165W-hMC4R (Figure 6C). This rescued cell surface expression of R165W-hMC4R was accompanied by a complete restoration of receptor-mediated cAMP production, going from 1.9% to 124 ± 26% of WT-hMC4R (n=12), upon NDP-α-MSH stimulation (Figure 6B). The potency (EC\textsubscript{50}) of UM0130866 to act as a PC to rescue MC4R signaling was found to be 441nM.

We also assessed the pharmacological properties of the R165W-hMC4R mutant receptor rescued by the PC. The cAMP response (potency and efficacy) to natural and synthetic melanocortin agonists, NDP-α-MSH, α-MSH, β-MSH and melanotan II (MTII) on the rescued R165W-hMC4R following treatment with UM0130866 were comparable to those measured for the WT-hMC4R post-PC treatment. However, the dose-response curves were slightly right shifted (4 to 5 fold) compared to untreated WT-hMC4R (Table 1 and Figure 7), most-likely reflecting residual UM0130866 antagonist activity.

To further dissect the dynamic process of the R165W-hMC4R rescue by UM0130866 and to determine the time of exposure needed to fully recover the maximum expression level of the mutant receptor at the cell surface, we performed a BRET based assay monitoring receptor targeting to the plasma membrane (34). UM0130866 promoted a time-dependent rescue of the R165W-hMC4R cell surface targeting, reaching after 8-hour treatment, 88% of the value observed for the untreated WT receptor (Figure 6C).
Taken together, these data indicate that the MC4R antagonist, UM0130866, act as a very efficacious PC with reasonable potency and restores WT-like signaling properties to R165W-MC4R in cell-based assays, making it a candidate for \textit{in vivo} testing.

\textit{Treatment with pharmacological chaperone UM0130866 rescues melanocortin sensitivity in R165W-hMC4R knock-in mice}

To determine whether UM0130866 has pharmacokinetic properties compatible with its use in vivo, free concentration and the time of exposure of UM0130866 formulated as spray dried dispersion (SDD; to enhance bioavailability) were determined in R165W-hMC4R homozygous mice (Supplemental Figure 3). For the two highest oral doses tested (60mpk and 100mpk), the free maximum plasma concentration levels were respectively 2.2 and 4-fold over its unbound fraction cell-based PC potency (≈250nM represented by the dashed line in Supplemental Figure 3). At the highest dose administered (100mpk), the free fraction concentration of UM0130866 remained at 2 fold over the in vitro PC potency of unbound fraction for up to 6 hours, a kinetic pattern favorable for rescuing a significant amount of mutant receptor at the cell surface.

To test the \textit{in vivo} PC efficacy of UM0130866, we assessed its ability to restore sensitivity to the melanocortin agonist MTII stimulation in homozygous R165W-hMC4R Ki mice using food intake as readout (Figure 8A). As previously observed in Figure 1C, MTII promoted a significant decrease in food intake in non-transgenic but not in R165W-hMC4R animals (Figure 8C). Treatment with UM0130866 before MTII administration led to a decrease in food consumption of 40% compared to their basal food intake in control conditions, showing that prior exposure to UM0130866 restores the anorexic effect of MTII in homozygous R165W-hMC4R mice (Figure 8C). In contrast, no significant effect of the PC treatment was observed on the anorexic response
of MTII in the WT-hMC4R homozygous mice (Figure 8B). No interference on MTII response, such as negative competition, was seen in mice with a functional receptor (i.e. in non-transgenic littermates or in homozygous WT-hMC4R mice), showing that MTII was able to displace the PC antagonist. Furthermore, no change in food intake was observed in homozygous loxTB MC4R null mice, either upon MTII only or following the co-treatment (UM0130866+MTII) (Figure 8D), demonstrating that the anorexigenic effect observed in homozygous R165W-hMC4R mice is dependent on functional rescue of hMC4R, consistent with the PC action of the compound. Altogether, those data provide the first in vivo proof of principle that PC approach is efficient in partially reversing the MC4R deficiency-linked food intake effects.

Discussion
This study describes two unique humanized MC4R transgenic mouse models harboring either a wild type or a mutant human allele in place of the mouse receptor allele. Both models are MC4R-dependent and recapitulate many of the characteristics of human obesity resulting from deficiencies in the melanocortin system such as increased food intake, weight gain, hyperglycemia and increased linear growth. However, the mechanisms leading to the obesity phenotypes are clearly different for the two models. As expected for a loss of function for mutation resulting from receptor misfolding, mice harboring two copies of the R165W-hMC4R allele did not respond anymore to central or peripheral administration of MTII melanocortin agonist, consistent with the notion that the lack of receptor expression at the cell surface is the primary cause leading to obesity. In contrast, obese mice harboring the WT-hMC4R alleles remained fully responsive to the synthetic agonist MTII and the agonist β-MSH and showed decreased sensitivity to α-MSH,
resulting in a hypomorphic phenotype. The study is also the first in vivo proof of concept that PC can rescue the function of a misfolded obesity-causing human MC4R mutant allele. In addition to open new therapeutic possibilities for this disease, the data confirm that the R165W-hMC4R mice represent a valid model to test the in vivo therapeutic potential of PCs.

When considering the WT-hMC4R KI obesity model, the difference in sensitivity to α-MSH is dependent on the species of the receptor and not on a difference in the primary sequence of α-MSH, since mouse and human sequences are perfectly conserved. In contrast, we did not observed such difference in sensitivity to β-MSH, which is produced in humans but not in mice (32, 33), suggesting that the difference in α-MSH sensitivity most-likely does not reflect a difference in the expression level of the transgenic receptor compared to the mouse MC4R and reinforcing the idea that β-MSH plays a significant role in energy homeostasis in humans. The potential involvement of β-MSH in human body-weight regulation has previously been revealed through the reports of heterozygous loss-of–function mutations occurring in the POMC gene identified in obese people (35-37). More recently, another example of the β-MSH implication in the maintenance of energy homeostasis in mammals was reported, describing a frameshift mutation in the coding sequence of the canine POMC gene leading to obesity (38). Taken together, these data underline the significance of β-MSH secretion in maintaining energy homeostasis in mammals that produce it and that the hypomorphism observed in mice carrying the WT-hMC4R allele might result from a decrease in melanocortin tone due to the absence of β-MSH in mice, leading to the development of an obese phenotype. Moreover, from an evolutionary point of view, the reduced sensitivity of the hMC4R to α-MSH compared to mouse receptor is consistent with the apparent predominance of the β-MSH system in humans that is also illustrated by the detection of a higher number of β-MSH-positive neurons compared to α-MSH neurons in human arcuate nucleus (35).
Consistent with the hypothesis that a decrease in melanocortin tone is the main cause of the WT-hMC4R KI mice hypomorphic phenotype, we observed that chronic central infusion of the super-agonist MTII (39) restored a normal-like cumulative food intake in homozygous WT-hMC4R mice and induced a significant weight loss. The fact that homozygous WT-hMC4R mice are sensitive to MTII chronic exposure indicate that the hypomorphic phenotype results from a decrease in MC4R agonist tone rather than a fault in the transgenic human WT receptor sensitivity.

It follows that we have generated two types of obese mouse models, one carrying a hypomorphic WT-hMC4R allele in mouse background, which might be useful in the context of studying melanocortin deficiency and a second one carrying an amorphic mutant allele corresponding to a model mimicking a conformational disease. The mouse harboring the amorphic R165W mutant allele represents a good model for the MC4R-linked familial early onset obesity as it mimics many of the characteristics observed in humans with MC4R loss of function mutations, such as hyperphagia, increased in linear growth, early onset obesity as well as symptoms of type II diabetes such as elevated glycemia (3). The R165W is a mutation reported in several obese patient cohorts (19-23) and is representative of a large number of obesity-causing MC4R mutations resulting from misfolding and intracellular retention of the receptor.

The observation that UM0130866 acute treatment restored the anorexigenic response of R165W-hMC4R KI mice to MTII provides a proof of principle that the PC approach represents a promising therapeutic avenue for the treatment of obesity resulting from misfolded MC4R and demonstrates that this new MC4R mouse model is a valid in vivo tool to test PC activity.

Although it is the first in vivo proof of principle for the action of an MC4R PC, a previous study has demonstrated that PC targeting the gonadotropin releasing hormone receptor (GnRHR) can restore the activity of a mouse model in which a mutation responsible for hypogonadotropic
hypogonadism was introduced in the mouse GnRHR gene (11), illustrating the generalizability of the concept.

One particularity of the model presented here is the introduction, in mouse, of the human gene harboring a disease-causing mutation, increasing its drug discovery translational value and possibly unmasking species differences. This latter aspect is clearly illustrated by the unexpected hypomorphic phenotype observed for the WT-hMC4R-KI mice that revealed the lower sensitivity of the human MC4R to α-MSH, which, combined with the lack of β-MSH in mouse, resulted in obesity. Such lower responsiveness of the human vs mouse MC4R to α-MSH is most likely counterbalanced in human by the presence of both α-MSH and β-MSH.

One of the implications of the R165W-hMC4R functional rescue by UM0130866 is that PC with antagonistic properties could be therapeutically relevant if the pharmacokinetics (PK) of the compound allow its dissociation from the receptor to enable the agonist action once the receptor has been chaperoned to the cell surface. Such favorable pharmacokinetics have also been seen for the GnRHR-targeting PC discussed above (11) as well as in the case of PC targeting the vasopressin V2 receptor for the treatment of nephrogenic diabetes insipidus in humans (12).

Yet, the design of long-term exposure dosing needed for therapeutic purposes might be challenging considering the pulsatile pattern required in this strategy and the circadian release profile of melanocortins. New compounds with the required PC potency and PK profiles will therefore be needed to address the efficiency of such therapeutic approach on reversing the obesity phenotype.

In recent studies, a super-agonist, Setmelanotide/RM-493 was successfully tested in obese patients with melanocyte stimulating hormone deficiency as hormone replacement therapy (40). In a separate study the therapeutic potential of this compound was examined in a cohort of
heterozygous MC4R-deficient patients (41). Although no significant weight loss was observed compared to placebo treatment, a modest weight loss was seen in some patients. The authors suggested the intriguing possibility that Setmelanotide/RM-493 could act as a weak PC. However, given the peptidic nature of the compound, its action as a PC, requiring intracellular penetration, is unlikely. Alternatively, the presence of only one functional WT allele may be sufficient to provide a response to a super-agonist such as Setmelanotide/RM-493. Further studies are needed to establish the mechanism by which this compound could have an effect on some heterozygous MC4R-deficient patient.

A PC-based approach such as the one described in this study could theoretically be efficient for both homozygous and heterozygous patients as it rescues the mutated allele and does not rely on the presence of a functional allele. However, it would be predicted that PCs would be more efficacious in heterozygous patients since the amount of rescued receptors needed to attain the anorexic response threshold would be more easily reached given the residual activity provided by the WT allele. It could also be an effective approach even if some intracellularly-retained mutants had dominant negative effects by interfering with the cell surface trafficking of the WT allele, as it has been shown for MC4R and other MC receptors (42, 43).

This is an important point since most patients have heterozygote deficiencies. It was previously found that the administration of MC4R agonists could have cardiovascular adverse effects resulting from the sustained activation of the Gq pathway (44). UM0130866 being an antagonist, it would presumably not activate this pathway. Moreover, the PC strategy relying on the activation of the rescued receptor by its endogenous agonists, which would be secreted under normal spatio-temporal conditions, it would reduce the possible on-target adverse cardiovascular impact that an exogenous agonist could have. It should also be re-emphasized that effectiveness
of the treatment would be dependent on the pharmacokinetics of the compound and the dosage regimen used to allow binding of endogenous agonists. Intermittent (pulsatile) PC administration would provide PC-free periods during which PC dissociation occurs and a rescued receptor can be active as it has been shown for rescuing a mutant form of GnRHR in an *in vivo* mouse model (11).

The present study clearly demonstrated that PC treatment could restore the anorexic response of homozygous R165W-hMC4R mice to acute treatment with melanocortin receptor agonist. However, the impact of chronic PC treatment on weight loss remains to be investigated. The lower responsiveness of the human receptor to α-MSH may require that preclinical studies carried-out in mice include co-treatment with exogenous ligand that display high affinity for hMC4R, such as β-MSH or MTII. This mutation will not affect clinical studies since β-MSH is endogenously produced in humans. In addition, to food intake and weight gain, biomarkers of PC actions could include the development of positron emission tomography probes to detect the rescue of receptor binding site in the hypothalamus. Additionally, circulating levels of peptide YY could be used as a biomarker for MC4R activation, as its release has been proposed under the control of MC4R (45).

Given the limited therapeutic options for severely obese patients harbouring MC4R mutations, alternative strategies targeting the molecular defect responsible for the disease may address an unmet medical need. The proof of principle presented in the present study is an important step toward testing PC candidates that may represent such alternative strategy for the treatment of MC4R-linked familial early onset obesity.
Methods

Production of Knock-in mice and Animal Care

Using standard ES cell procedures (see supplemental method for details), chimeric animals were obtained and mated with C57BL6 mice to generate mice heterozygous for either the 3HA-hMC4R(R165W)-Venus or myc-hMC4R(WT)-Venus allele on a mixed C57Bl6/J and 129S6B6F1 background. Animals were housed under specific-pathogen-free conditions in ventilated cages and were handled in accordance with procedures and protocols approved by Université de Montréal and Université Laval institutional animal care committees. Prior to experiments, mice were housed in groups of two to five mice at 22 °C–24 °C using a 12 hr light/12 hr dark cycle (6:00 am-6:00pm) and fed ad libitum with regular chow (Teklad global 18% protein diet 2028, 3.1 kcal/g metabolizable energy, 18% kcal from fat, Harlan Teklad, Madison, Wisconsin) and water provided ad libitum. Heterozygous mice were backcrossed three times on C57Bl6/J genetic background and were then maintained by breeding heterozygotes inter se.

LoxTB MC4R heterozygous mice, carrying a loxp-flanked transcriptional blocking (loxTB) sequence that prevents normal endogenous MC4R transcription and translation from the endogenous locus, were purchased from Jackson Laboratory (JAX# 006414) (24, 39), to be used as negative controls and were bred in the same conditions and facilities as described for the humanized MC4R mouse lines.

Immunohistochemistry

Anti-GFP immunolabelling

Brains from transgenic animals were collected, snap-frozen in isopentane and stored at -80°C until further processing. Sections were cut at 10 μm using a cryostat. Serial 10-μm thick frozen brain
sections were then processed in the automatic immunostainer Discovery XT system (Ventana Medical Systems /Roche) for indirect peroxidase labeling using as primary antibody anti–GFP (Ab290 from abcam at 1:1000) against the C-terminal yellow fluorescent protein fused to the transgene receptor and Streptavidin horseradish peroxidase, and 3,3-diaminobenzidine were used according to the manufacturer’s instructions (DABmap detection kit, Ventana Medical Systems/Roche). Tissue sections were then stained using a conventional hematoxylin and eosin protocol. Finally, each slide was coverslipped and scanned at high resolution (40X) using the Nanozoomer Digital Pathology equipment (Hamamatsu, Bridgewater, NJ).

Anti-MC4R immunolabelling

Brains from transgenic animals were harvested and maintained in paraformaldehyde (4%) for 7 days and transferred into a solution containing paraformaldehyde (4%) and sucrose (10%) until further processing. Brain sections (25 µm) were cut from the olfactory bulb to the brainstem using a sliding microtome (Histoslide 2000, Heidelberg, Germany). Brain slices were stored at -30°C in a cryoprotective solution containing sodium phosphate buffer (50 mM), ethylene glycol (30%), and glycerol (20%) and mounted on poly-L-Lysine-coated slides. Mice brain coronal sections (7µm) were sequentially incubated at room temperature in methanol containing 3% of H2O2 (30 min), PBS containing 0.1% of triton X-100 (10 min), 0.25% trypsin (2 min, 37°C) and PBS containing 1% of normal goat serum (NGS) for 1h. They were then incubated at 4°C for 18 hours with rabbit affinity-purified antiserum directed again MC4R (1:400; Alamone). Sections were rinsed with PBS, incubated with SignalStain® Boost IHC detection reagent (Cell Signaling, Whitby, Canada, ON; 30min, RT) and labelled using SignalStain® DAB substrate kit (Cell Signaling). Coronal sections were rinsed with PBS and incubated with DAB/Nickel peroxidase substrate (Vector Laboratories, Burlington, Canada, ON). After washes in PBS, slices were
mounted in Distyrene Plasticizer Xylene (DPX). Images were captured on Olympus BX51 microscope using Retiga 2000R QIMAGING camera and Image–pro plus 7.0 software.

**Phenotyping**

At three weeks of age, mice were weaned and group-housed with littermates of the same sex. At 4 weeks of age, weight gain was measured regularly on a weekly basis until 15 weeks of age using a Sartorius ELT402 balance. Length was measured on anesthetized mice (short induction with isoflurane gas) at 16-17 weeks old by manual immobilization and extension of the mice to its full length and measurement of the nose-to-anus distance in centimeters. Whole blood was collected by tail vein bleeding in fasted mice (5 hours fasting prior to bleeding) at 16-17 weeks of age and blood glucose was assessed using Accu-check Aviva meter (Roche). Basal food intake on regular chow diet (Teklad Global 18% Protein Rodent Diet from Harlan laboratories, USA) was measured in individualized mice of 19-20 weeks of age. Mice were individually housed at least four days before any measurements were taken. A sufficient amount of food for the week was then weighed and provided to the mice *ad libitum*. Each day, morning (8:00 am) and afternoon (5:00pm) at the same time, the remaining food was measured for 5 consecutive days. The daily average of food intake during dark cycle and light cycle was calculated for each genotype.

**ICV injections**

**Stereotaxis**

Adult male mice from each transgenic lines (LoxTB MC4R null mice, hMC4R (WT or R165W) KI mice) were stereotaxically implanted with a permanent 22-gauge single-guide cannula (Plastics One, Roanoke, Virginia) aimed at the lateral ventricle using the following stereotaxic coordinates:
0.4 mm posterior to the bregma, 1 mm lateral to the bregma and 2 mm ventral to the skull surface. The guide cannulas were secured with screws and cranioplastic cement (Dentsply Canada, Woodbridge, Canada, ON). To prevent clogging and to reduce the potential for brain infection, sterile obturators (Plastics One) were inserted into the guide cannulas. Appropriate cannula placement was functionally verified before experiments using the dipsogenic effects of angiotensin 2 injections (5 ng) as positive control, 5 days after surgery.

*Melanocortin agonist sensitivity measurement*

The day prior to agonist sensitivity assay, basal food consumption was measured individually between Zeitgeber time (ZT10) (10 hours after lights on) and ZT15 (3hrs after lights off). The days of treatment, mice were icv injected with either Melanotan II (MTII; 1nM), β-MSH (20pM; 100 pM) or α-MSH (20pM; 100 pM) in a final volume of 2 µl of artificial cerebrospinal fluid (aCSF; Harvard Apparatus, Saint-Laurent, Canada, QC), at ZT10. Food consumption was then assessed between ZT10 and ZT15. In order to evaluate the impact of each treatment, food consumption was then normalized relative to the basal food consumption for each mouse. The sequence of the α-MSH peptide used is shared between mouse and human whereas the human sequence was used for β-MSH since it is not produced in the mouse.

*Subchronic infusions with osmotic minipump implantation*

MTII agonist or aCSF (vehicle) were infused icv at a dose of 1nmol/day in the lateral ventricle using 22-gauge single-guide cannula (Plastic One) aimed at the lateral ventricle (as previously described in stereotaxis section) and connected by a catheter to an Alzet osmotic minipump (model 1002, ALZA, Palo Alto, CA). The pump, which deliver their content at a flow rate of 0.25µl/hr for 14 days were subcutaneously implanted in the interscapular region. Body weight and food
consumption were evaluated each day at ZT6 (6 hours after lights on) on individualized mice during one week.

**Indirect calorimetry experiments**

Mice were placed in metabolic chambers (AccuScan Instruments, Inc., Columbus, OH) and acclimated for 72 h with free access to food and water. Then, oxygen consumption ($V_{O2}$) and carbon dioxide production ($V_{CO2}$) were evaluated every 15 min over 24 h in an open circuit system with an oxygen analyzer (Applied Electrochemistry, Pittsburgh, Pennsylvania, S-3A1) and carbon dioxide analyzer (Applied Electrochemistry, CD-3A) as previously described (46). Energy Expenditure (EE) data are represented by area under the curve (AUC)/lean mass as differences have been observed in lean mass between groups.

**Glucose tolerance test (IPGTT) and insulin tolerance test (IPITT)**

For the IPGTT, mice were fasted for 12h and were injected i.p. with 1g/kg of D-Glucose (Sigma Aldrich, St Louis, MO). For the IPITT, animals were fasted for 6h and were injected i.p. with 0.75U/kg of insulin (Humulin, Lilly, Canada). Blood samples were collected from the tail vein and glucose was measured using a glucometer (OneTouch).

**Cells for in vitro assays (cAMP and BRET)**

HEK293T cells stably (for cAMP accumulation) or transiently (BRET) expressing hMC4R were used for cell-based assays. Cells were regularly tested for mycoplasma contamination (PCR Mycoplasma Detection kit, abm, BC, Canada) and only mycoplasma-negative cells were used for the assays.
**cAMP assay**

Intracellular cAMP accumulation was measured using a competitive immunoassay based on homogeneous time-resolved fluorescence technology (cAMP dynamic-2; Cis-Bio, Bedford, MA). hMC4R HEK293T stable cell lines expressing either the WT or mutant form R165W 3HA-hMC4R-Venus constructs were dispensed in 96-well plates (15 x10^3 cells/well) and processed as described below.

For antagonist potency assessment, cells were pre-incubated with increasing concentration of UM0130866 for 1hr at 37°C on Heidolph Titramax 100 shaker at speed 900 rpm in complete buffer [140mM NaCl, 2.7mM KCl, 1mM CaCl2, 12mM NaHCO3, 5.6mM D-glucose, 0.49mM MgCl2, 0.37mM NaHPO4, 25mM Hapes, pH 7.4, 0.75 mM 3-isobutyl-1-methylxanthine, 0.01% BSA (w/v)]. Then, 25nM of NDP-α-MSH (corresponding to EC50) in complete buffer were added for 30 min at 37°C as above. For maximal response (100%), cells were only incubated with 25nM NDP-α-MSH as described above. Cells were kept on ice for 5 min before proceeding to cAMP measurement. For PC potency assessment of UM0130866, cells were treated the day before the assay with increasing concentrations of UM0130866 for 15 h. After wash in 1X D-PBS (pH 7.4), cells were incubated 1hr at 37°C on Heidolph Titramax 100 shaker at speed 900 rpm in complete buffer containing 1μM NDP-α-MSH. For agonist potency measurement post-PC treatment, cells were treated in the presence or absence of 10 μM UM0130866 for 15 h before the cAMP assay, washed in 1X D-PBS, pH 7.4 and incubated 1hr at 37°C on Heidolph Titramax 100 shaker at speed 900 rpm in complete buffer containing increasing concentration of melanocortin agonists. For all assays, plates were then put at -80°C at least 90min and thawed at RT on Heidolph Titramax 100 shaker at speed 1050 rpm. Cell lysis were then transferred in 384-well plates, lysed, and incubated
with cAMP labeled with the dye d2 and anti-cAMP M-Antibody labeled with Cryptate according to the manufacturer’s protocol. Reading of the homogeneous time-resolved fluorescence signal was performed on an Artemis time-resolved fluorescence resonance energy transfer plate reader (Cosmo Bio USA, Carlsbad, CA).

**Cell surface expression BRET-based assay**

Rescue of mutant MC4R cell surface expression was measured using a BRET-based biosensor assay monitoring receptor targeting to the plasma membrane, as previously described (27). Briefly, HEK293 cells were transiently transfected with WT or mutant 3HA-MC4R-RlucII (BRET donor) along with rGFP-CAAX (BRET acceptor). Cells were then exposed to 10μM of UM0130866 for the indicated time and BRET measured on a Mithras LB940 Multimode Microplate Reader (Berthold), 5 min after the addition of the Rluc substrate, coelenterazine 400a at 2.5 μM final concentration, using filters set at 410 ± 35nm (RlucII) and 515 ± 10nm (rGFP). BRET ratio was determined by calculating the ratio of the light emitted by rGFP over the light emitted by RlucII and normalised to untreated WT-MC4R (expression set at 1).

**Acute in vivo administration of UM0130866**

In order to measure food intake for 7 hours during the nocturnal cycle, we have proceeded gradually to a shift of the standard light/dark cycle (6:00 am-6:00pm) to another 12 hr light/12 hr dark cycle but with 7 hours time difference (11:00pm: 11:00am) from the original cycle. Male mice at around 6 week-old underwent during one month to a gradual adaptation of time difference at a frequency of 1 hour shift every two days until reaching 7 hours time difference from the original dark-light cycle. Mice were maintained on regular chow and water provided *ad
*libitum.* Mice were then individualized two weeks before starting the assay. To acclimatize the animals prior to the experiment, food intake was measured by weighting the food every two hours from ZT11 (eleven hours after lights on) to ZT19 (7 hours after lights off). These measures were used to validate the effectiveness of the mice circadian rhythm synchronization to the new schedule. Homozygous male mice from each transgenic line at 13-18 week-old and their non-transgenic littermates, respectively, received per os (gavage) 100mpk UM0130866: SDD formulated in 0.5% methylcellulose (metcell) in water, at ZT11 (one hour before lights off) followed by an i.p. injection of 10 or 20mpk of MTII at ZT15 (three hours after lights off). The anorexic effect of MTII on food intake was measured for two hours between ZT17 (5 hours after lights off) and ZT19 (7 hours after lights off). A randomized crossover experimental design was chosen. Each mouse received all treatments with a washout period of two days between sets of experiments. Food intake measurements were assessed as described above during that period.

**Statistical analysis**

Cell-based assays were run in triplicates with a number of experiments per assay corresponding to n $\geq$2-3. For in vivo experiment, mice were age-matched, weight-matched and randomly assigned to the treatment groups using non-transgenic littermates (NTG) as controls. We have chosen a randomized crossover experimental design with a two days washout period in order to reduce number of animals used in each experiment, n>4 mice per group to achieve statistical significance. Exclusion criteria were 20% weight loss (considering normal weight i.e. 25-30g), no recovery of daily food intake 24 hours post-treatment (considering again normal range i.e. 3.5-4g of food consumption).
Data are presented as means ± S.E.M. All statistical tests or curve fitting were performed using GraphPad Prism version 6.0h for Mac OS X (GraphPad Software, La Jolla California USA).

For experiments with two experimental groups (evaluating treatment effect on weight loss in chronic MTII exposure experiments), comparisons were made using the non-parametric Mann-Whitney U test. For experiments with more than two experimental groups, quantitative data were subjected to one-way Kruskal-Wallis test of variance. Pair-wise comparisons were then made using post hoc Dunn’s multiple comparisons test. For experiments with repeated measures along time, quantitative data were subjected to two-way ANOVA test of variance with pair-wise comparisons using post hoc Bonferroni’s multiple comparisons test. For experiments with paired matched values such as the test of melanocortin sensitivity, quantitative data were analyzed with the Wilcoxon matched paired test. Differences with $P < 0.05$ were considered statistically significant. All curve fitting was conducted by nonlinear regression analyses.

Study approval

Animals were handled in accordance with procedures and protocols approved by Université de Montréal and Université Laval institutional animal care committees. Experimental procedures were revised and approved by the University of Montréal and Université Laval animal ethic committees.
Author contributions

P.R., D.L., D.R. and M.B. contributed to the conception of the project, the study design and the interpretation of the results.

P.R. and D.L. performed or supervised and analyzed the experimental data.

P.R. and M.B. wrote the manuscript.

D.L. and D.R. assisted in the writing and reviewing of the manuscript.

M.B. and D.R. were responsible for obtaining funding for the project.
Acknowledgments

We thank Benjamin Turgeon for his contribution in the conception of the transgenesis strategy and Véronique Paradis, Sébastien Harton, Marc Palardy for technical assistance in generating the ES clones and the transgenic lines; Réjean Ruel, Eugene Chekler and Anne Marinier for the design and SAR optimizations of the pharmacological chaperone used in the study; Natalie Hosea and Cheunlei Parng for their expertise in drug metabolism. The authors also acknowledge the technical support of Nicole Sawyer, Stéphane St-Onge, Eric Jolicoeur, Sasmita Tripathy, Yves Chantigny from the IRIC Medicinal chemistry platform in the optimization of the pharmacological chaperone used in this study. We thank Marie-Claude Roy, Sara Fournier, Geneviève Brindle and Marie-Ève Désaulniers for assistance with in vivo work. We would like to thank the facilities and the technical assistance of the animal care platforms at IRIC and CRIUCPQ research centers. We are grateful to Julie Plamondon at CRIUCPQ, the IRIC Histology platform and Hiroyuki Kobayashi for expert technical assistance in immunohistochemistry. We thank Monique Lagacé for critical reading of the manuscript; Christian Charbonneau for assistance in figures formatting. We are also grateful to Janice E Chin and Greg LaRosa for reviewing this manuscript; Natalie Hosea, Lyn Jones, Yong Ren, Jay Janz, Leslie Pustilnik, Jodi Goodwin at Pfizer for useful discussions and suggestions. The work was supported by CIHR, Operating (MOP10501) and Foundation (FDN148431) grants to M.B. and Operating grant (MOP 119436) to D.R.. The work was also funded by a Pfizer/IRICoR partnership grant to M.B.
References


23. Tan K, Pogozheva ID, Yeo GS, Hadaschik D, Keogh JM, Haskell-Leuvano C, O’Rahilly S, Mosberg HI, and Farooqi IS. Functional characterization and structural modeling of


43. Sanchez-Laorden BL, Sanchez-Mas J, Martinez-Alonso E, Martinez-Menarguez JA, Garcia-Borrent JC, and Jimenez-Cervantes C. Dimerization of the human melanocortin 1


Figure 1. Humanized KI mouse expression and functionality. (A-C) Immuno-histochemical labeling of MC4R positive neurons. Brain sections of the paraventricular nucleus (PVN) of the hypothalamus, the medial preoptic area (MPOA), the Medial Amygdala (MeA) or the Mesencephalic Periaqueductal Gray (PAG) from non-transgenic (NTG), heterozygous (HET) or homozygous (HOMO) hMC4R KI and homozygous loxTB MC4R null mice (as indicated) were labelled with anti-GFP antibody (A) or with anti-MC4R antibody (B and C), C being a higher magnification of the PVN and MPOA for the NTG, WT and R165W-hMC4R mice. Inset in (A): higher-power magnification of boxed areas containing GFP immune reactive neurons (brown cytoplasmic reaction product). Arrows in the center and right insets indicate GFP positive neurons. Scale bar: 100μm (A), 50μm (A, inset), 2cm (B) and 10μm (C). (D) MTII response in mouse models. MTII (1nmol) was icv injected in 16-22 weeks of age in non-transgenic (NTG) and homozygous (HOMO) hMC4R KI (wild type (WT) or mutant (R165W)) or LoxTB MC4R null mice. Food intake was measured 4hrs post-administration in dark phase and reported in percentage. Data were analyzed using the Wilcoxon matched paired test for LoxTB MC4R null (NTG=9, P=0.0078, HOMO=10), WT-hMC4R (NTG=9, P=0.0078; HOMO=10, P=0.0020) and R165W-hMC4R (NTG=7, P=0.0156; HOMO=6).
Figure 2. Body weight gain, food consumption, body length and blood glucose of WT- and R165W-hMC4R KI mice and their control littermates. (A and B) Weight gain of males (A) or females (B) WT-hMC4R KI mice (left) (Male: NTG=7, HET=15, HOMO=10; Female: NTG=6, HET=14, HOMO=8) or R165W-hMC4R KI mice (right) (Male: NTG=10, HET=19, HOMO=9; Female: NTG=10, HET=12, HOMO=6). (C-F) Food intake was measured in individualized mice (19-20 week-old) each day for 5 consecutive days. Daily average of food intake was then calculated. (C and D) Food intake during dark cycle of WT-hMC4R (Male: NTG=4; HET=13; HOMO=11; Female: NTG=5, HET=11, HOMO=7) or R165W-hMC4R (Male: NTG=5, HET=11, HOMO=11; Female: NTG=8, HET=10, HOMO=13). (E and F) Food intake during light cycle of WT-hMC4R (Male: NTG=4; HET=13, HOMO=11; Female: NTG=5, HET=11, HOMO=11) or R165W-hMC4R (Male: NTG=5; HET=11; HOMO=13; Female: NTG=8, HET=10, HOMO=13). The caloric intake can be estimated using 3.1 kcal/g as metabolizable energy. (G and H) Total body length was measured on 16-17 weeks old mice on WT-hMC4R (Male: NTG=8, HET=15, HOMO=10; Female: NTG=7, HET=16, HOMO=8) or R165W-hMC4R (Male: NTG=5, HET=11, HOMO=11; Female: NTG=7, HET=10, HOMO=13). (I and J) Whole blood was collected by tail vein bleeding in fasted mice (5 hours fasting prior to bleeding) at 16-17 weeks of age. Blood glucose concentration was assessed using Accu-check Aviva meter in WT-hMC4R (Male: NTG=9, HET=11, HOMO=14; Female: NTG=12, HET=12, HOMO=12) or R165W-hMC4R (Male: NTG=5, HET=11, HOMO=11; Female: NTG=8, HET=10, HOMO=13). Data are the mean ± SEM and were analyzed either using two way ANOVA test of variance followed by pair-wise comparisons using post hoc Bonferroni’s multiple comparisons test (A and B) or using one-way Kruskal-Wallis test of variance followed by pair-wise comparisons using post hoc Dunn’s multiple comparisons test (C-J). The asterisks denote significant difference of either HOMO or HET hMC4R KI mice compared to NTG littermates. HOMO (homozygote), HET (heterozygote), NTG (non-transgenic). * P < 0.05, ** P < 0.001.
Figure 3. Central effect of natural melanocortin agonists on nocturnal food intake in WT-hMC4R KI and LoxTB MC4R null mice. Intracerebro-ventricular (icv) injections in 16-22 weeks of age of WT-hMC4R KI (A) (NTG=9; Homo=10) or loxTB MC4R null (B) (NTG=9; Homo=8) male mice. ICV injection of doses of α-MSH (left panel) or β-MSH (right panel), (20 pmol/μl and 100 pmol/μl, from upper to lower panels) were done at ZT10 (10 hours after lights on). Food consumption was then assessed between ZT10 and ZT15 (3 hours after lights off). Food consumption was then normalized relative to the basal food consumption measured the day before for each mouse (% food intake vs basal) and is expressed as means ± SEM. The sequence of the α-MSH peptide used is shared between mouse and human whereas the human sequence was used for β-MSH since it is not produced in the mouse. The asterisks denote significant difference of α-MSH or β-MSH group compared to the group receiving cerebrospinal fluid only (aCSF), using Wilcoxon matched pairs signed rank test. ** P < 0.001
Figure 4. Effect of central chronic infusion of MTII on food intake and total body weight in homozygous WT-hMC4R KI and loxTB-MC4R null mice. MTII at a dose of 1nM/day for 7 days were infused icv through a catheter connected to an osmotic pump implanted subcutaneously. (A-B) Food consumption was evaluated each day at ZT6 (6 hours after lights on) during one week. Data are the mean ± SEM of 24 hours food intake for WT-hMC4R male mice (A) (aCSF and MTII, n=5) or loxTB-MC4R null male mice (B) (aCSF and MTII, n=5). Analysis was done using two way ANOVA test of variance followed by pair-wise comparisons using post hoc Bonferroni’s multiple comparisons test. (C) Body weight was evaluated each day at ZT6 (6 hours after lights on) during one week. Data are the mean of delta weight loss upon MTII treatment compared to total body weight upon aCSF treatment for each group of mice for WT-hMC4R (aCSF and MTII, n=5) or LoxTB-MC4R (aCSF and MTII, n=4). Analysis was done using the non-parametric Mann-Whitney U test. All experiments were done in mice at 16-20 weeks of age. The asterisks denote significant difference of HOMO hMC4R KI or KO mice compared to aCSF icv infusion. * P <0.05
Figure 5. Energy expenditure, glucose tolerance and insulin tolerance tests on R165W-hMC4R KI mice and their control littermates. (A) Oxygen consumption (Vo₂) and carbon dioxide production (VCO₂) were evaluated every 15 min over 24 h on individualized R165W-hMC4R KI males (left) or females (right) mice. Energy expenditure data are represented as area under the curve (AUC)lean mass (9-10, 16-17 and 26-27 week-old, Males: NTG=8, HET=8, HOMO=9; Females: NTG=7, HET=7, HOMO=7). (B) Insulin tolerance was measured on R165W-hMC4R KI males (left) or females (right) mice injected i.p. with 0.75U/kg of insulin after 6h fasting (17-18 and 27-28 week-old, Males: NTG=8, HET=9, HOMO=9; Females: NTG=7, HET=8, HOMO=7). (C) Glucose tolerance was measured on R165W-hMC4R KI males (left) or females (right) mice injected i.p. with 1g/kg of D-Glucose after 12h fasting (Males: 9-10, 16-17 and 26-27 week-old NTG=8, HET=9, HOMO=9; Females: 9-10 week-old NTG=6, HET=8, HOMO=6, 16-17 and 26-27 week-old NTG=7, HET=8, HOMO=7). Data are the mean ± SEM and were analyzed either using one-way Kruskal-Wallis test of variance followed by pair-wise comparisons using post hoc Dunn’s multiple comparisons test (A) or two way ANOVA test of variance followed by pair-wise comparisons using post hoc Bonferroni’s multiple comparisons test (B and C). The asterisks denote significant difference of either HOMO or HET hMC4R KI mice compared to NTG littermates. HOMO (homozygote), HET (heterozygote), NTG (non-transgenic). * P < 0.05, ** P < 0.001.
Figure 6. Characterization of PC UM0130866 compound. (A) Evaluation of antagonist potency of compound UM0130866 on WT-hMC4R. HEK293T cells stably expressing the WT-hMC4R were pre-incubated for one hour with increasing concentrations of compound UM0130866 followed by the addition of 25 nM NDP-α-MSH, concentration corresponding to EC$_{50}$, for 30 min. cAMP accumulation was then measured using a competitive immunoassay based on HTRF technology (cAMP dynamic 2 cis-bio kit). Data are expressed as percentage of inhibition compared to maximal cAMP response of WT-hMC4R expressing cells upon 25 nM NDP-α-MSH exposure. Data are the means ±SEM of five independent experiments. (B) Evaluation of PC potency on R165W-hMC4R. HEK293T cells stably expressing the R165W-hMC4R were treated with increasing concentrations of UM0130866 for 15 hours. Cells were then washed and incubated one hour at 37°C with 3μM of NDP-α-MSH and cAMP accumulation measured. Data are expressed as percentage of activation compared to maximal cAMP response of WT-hMC4R expressing cells upon a saturated concentration for NDP-α-MSH (3μM) in basal condition. Data are the means ±SEM (n=7). (C) Effect on trafficking to the cell surface of WT- and R165W-hMC4R. HEK293T cells transiently expressing WT- (triangle) or mutant R165W- (square) hMC4R, tagged at their C-terminal with RlucII were incubated in the absence (open symbols) or presence (filled symbols) of 10μM UM0130866 over time. Cell surface expression level was then measured by BRET between the receptor-RlucII (donor of energy) and rGFP-CAAX (acceptor of energy anchored at the cell surface). Inset: schematic representation of the cell surface expression BRET assay. Data are the mean ± SD of two independent experiments.
Figure 7. Evaluation of melanocortin agonist potencies on WT-hMC4R and R165W-hMC4R in the presence or absence of UM0130866 (PC). Cells expressing either the WT-hMC4R or R165W-hMC4R were treated (+) or not (-) with 10 μM UM0130866 for 15 hours. Cells were then washed in 1X D-PBS, pH 7.4 and incubated one hour at 37°C with increasing concentrations of melanocortin agonists NDP-α-MSH (A), α-MSH (B), β-MSH (C) or Melanotan II (D). cAMP accumulation was then measured using a competitive immunoassay based on HTRF technology (cAMP dynamic 2 cis-bio kit). Data are expressed as percentage of cAMP response for WT-hMC4R upon stimulation with a saturating concentration of NDP-α-MSH (3μM) under basal condition. Data are the means ±SEM of three independent experiments.
Figure 8. Effect of UM0130866 on MTII agonist response on food intake in hMC4R KI mice and in loxTB MC4R null mice. (A) Schematic representation of the paradigm. (B-D) HOMO male mice from each transgenic lines at 13-18 week-old and their NTG littermates, respectively, received per os (gavage) 100mpk UM0130866: SDD formulated in 0.5% methyl cellulose (metcell) in water, at ZT11 (one hour before lights off) followed by an i.p. injection of 10mpk (NTG) or 20mpk (Homo) of MTII at ZT15 (three hours after lights off) using a randomized crossover experimental design. Food intake was measured for two hours between ZT17 (5 hours after lights off) and ZT19 (7 hours after lights off) in individualized mice. Data are the mean ±SEM of WT-hMC4R KI mice (B) (NTG=23 and HOMO=22), R165W-hMC4R (C) (NTG=17; HOMO=45) and LoxTB MC4R null mice (D) (NTG=19; HOMO=18). The asterisks denote significant difference of treated group compared to control group using one-way Kruskal-Wallis test of variance followed by pair-wise comparisons using post hoc Dunn’s multiple comparisons test. ** P < 0.001.
Table 1: Potency and efficacy of natural and synthetic melanocortin agonists to stimulate cAMP production of WT-hMC4R and R165W-hMC4R post PC treatment in vitro.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>WT-hMC4R Untreated</th>
<th>UM0130866</th>
<th>R165W-hMC4R Untreated</th>
<th>UM0130866</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pEC50</td>
<td>Emax</td>
<td>pEC50</td>
<td>Emax</td>
</tr>
<tr>
<td>NDP-α-MSH</td>
<td>9.12±0.27</td>
<td>103.93±6.86</td>
<td>8.51±0.12</td>
<td>96.02±17.23</td>
</tr>
<tr>
<td>α-MSH</td>
<td>8.17±0.30</td>
<td>110.07±4.07</td>
<td>7.55±0.19</td>
<td>96.21±16.20</td>
</tr>
<tr>
<td>β-MSH</td>
<td>7.69±0.33</td>
<td>111.77±2.55</td>
<td>7.12±0.15</td>
<td>92.66±15.76</td>
</tr>
<tr>
<td>MTII</td>
<td>9.41±0.26</td>
<td>99.66±5.20</td>
<td>8.72±0.09</td>
<td>80.56±11.80</td>
</tr>
</tbody>
</table>

Data shown are the mean ± S.D. of three independent experiments. pEC50 is the negative logarithm of the EC50, which is the concentration of ligand that results in 50% stimulation of the maximal response (Emax). The maximal response (Emax) is expressed as the percentage of the Emax of untreated WT-hMC4R upon 1μM NDP-α-MSH stimulation.

* N.A.: not applicable (no agonist response was observed)