β₁ Integrin regulates adult lung alveolar epithelial cell inflammation

Erin J. Plosa,¹ John T. Benjamin,¹ Jennifer M. Sucre,¹ Peter M. Gulleman,¹ Linda A. Gleaves,² Wei Han,² Seunghyi Kook,¹ Vasily V. Polosukhin,² Scott M. Haake,³,⁴ Susan H. Guttentag,¹ Lisa R. Young,⁵ Ambra Pozzi,⁴,⁶,⁷ Timothy S. Blackwell,²,⁴,⁸ and Roy Zent⁴,⁶,⁸

¹Division of Neonatology, Department of Pediatrics, ²Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and ³Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA. ⁴Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA. ⁵Division of Pulmonary Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA. ⁶Division of Nephrology and Hypertension, Department of Medicine, ⁷Department of Molecular Physiology and Biophysics, and ⁸Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Introduction

Integrins, the extracellular matrix receptors that facilitate cell adhesion and migration, are necessary for organ morphogenesis; however, their role in maintaining adult tissue homeostasis is poorly understood. To define the functional importance of β₁ integrin in adult mouse lung, we deleted it after completion of development in type 2 alveolar epithelial cells (AECs). Aged β₁ integrin–deficient mice exhibited chronic obstructive pulmonary disease–like (COPD-like) pathology characterized by emphysema, lymphoid aggregates, and increased macrophage infiltration. These histopathological abnormalities were preceded by β₁ integrin–deficient AEC dysfunction such as excessive ROS production and upregulation of NF-κB–dependent chemokines, including CCL2. Genetic deletion of the CCL2 receptor, Ccr2, in mice with β₁ integrin–deficient type 2 AECs impaired recruitment of monocyte-derived macrophages and resulted in accelerated inflammation and severe premature emphysematous destruction. The lungs exhibited reduced AEC efferocytosis and excessive numbers of inflamed type 2 AECs, demonstrating the requirement for recruited monocytes/macrophages in limiting lung injury and remodeling in the setting of a chronically inflamed epithelium. These studies support a critical role for β₁ integrin in alveolar homeostasis in the adult lung.
well as lymphoid aggregates and increased macrophage accumulation, which are characteristic of patients with advanced chronic obstructive pulmonary disease (COPD). This condition was preceded by proliferation of inflamed AECs that exhibited abnormal cell-cell junctions and excessive inflammation. Reduction of monocytes and monocyte-derived macrophages caused rapid onset of emphysema in young mice, suggesting that these cells limit inflammation and injury by clearance of deranged type 2 AECs. Thus, we conclude that under physiological conditions, β1 integrin plays a critical homeostatic role in lung epithelial cells by suppressing inflammatory signaling.

Results
Conditional β1 integrin deletion in type 2 AECs results in emphysema and increased inflammation in aged mice. To test the importance of β1 integrin deletion after development, we crossed integrin β1αβ (β1fl/fl) mice with a doxycycline-inducible (dox-inducible) Cre recombinase under control of the surfactant protein-C (SP-C) promoter (designated as β1rtTA mice). β1 Integrin deletion was induced in type 2 AECs by addition of dox to drinking water from day P28, at the completion of lung development, until 2 months of age. Mice were sacrificed at 3 and 24 months of age. Lungs of 24-month-old β1rtTA mice exhibited emphysema and increased numbers of macrophages (Figure 1, A and B). Lung morphometry quantification by mean linear intercept demonstrated a 60% airspace enlargement in β1rtTA lungs compared with both β1fl/fl and β1rtTA mice that did not receive dox (Figure 1, C and D). Multiple lobes were sampled to minimize bias introduced by regional differences in alveolar size (25–27). There was evidence of bronchus-associated lymphoid tissue (BALT), which is characteristic of advanced COPD (arrows in Figure 1A, quantified in Figure 1E; and ref. 28). In addition to BALT lesions, histological examination revealed increased macrophages in β1rtTA lungs, identified by the pan-macrophage marker CD68 (Figure 1F), and an increase in bronchoalveolar lavage fluid (BALF) cell count (1.8 × 10⁵ ± 0.2 × 10⁵ cells/mL from β1rtTA lungs compared with 0.8 × 10⁵ ± 0.1 × 10⁵ cells/mL from β1fl/fl lungs; Supplemental Figure 1A; supplemental material available online with this article; https://doi.org/10.1172/jci.insight.129259DS1).

Epithelial dysfunction precedes major morphological changes in β1rtTA mice. To determine the timing of the structural deficits in β1rtTA lungs relative to gene deletion, we performed histological examination of 3-month-old mice. We verified the efficiency of β1 integrin deletion in the lungs of β1rtTA mice by immunohistochemistry and found it was removed in more than 90% of type 2 AECs (Figure 2, A and B). This finding was confirmed by immunoblotting of primary type 2 AEC lysates from β1rtTA and β1fl/fl mice (Figure 2C). Microscopic examination showed no difference in airspace size in 3-month-old β1rtTA mice (Figure 3, A and B). By crossing β1rtTA mice to mice expressing the mTmG reporter (allowing visualization of GFP+ progeny derived from cells that had undergone Cre activation), we observed that β1rtTA; mTmG mice exhibited GFP+ primary type 2 AECs immediately adjacent to β1-deficient type 2 AECs, suggesting β1 integrin is not required for type 2–to–type 1 AEC differentiation during homeostasis in the adult lung (Supplemental Figure 1B). β1rtTA mice did exhibit mild intraseptal edema (arrows in Figure 3C), increased BALF protein (Supplemental Figure 2A), and increased BALF macrophages (Supplemental Figure 2B). Transmission electron microscopy (TEM) revealed intact cell-matrix interactions (arrows in Figure 3D) and defects in tight junctions between type 1 and type 2 AECs. Rather than the normal dark stranded seal demarcating tight junctions at the apical cell-cell junction, β1rtTA lungs had a deep cleft (Figure 3, D and E, with tight junctions marked by asterisks in E). Consistent with these tight junction abnormalities, β1rtTA mice had decreased claudin-3 protein levels in primary type 2 AEC lysates (Figure 3F) and decreased mRNA expression of Claudin-4 but not Claudin-18 as measured by quantitative RT-PCR (qPCR) of type 2 AECs (Figure 3G).

We next assessed whether there were abnormalities of type 2 AEC-ECM interactions by visualizing their adherence to the laminin-containing basement membrane. While the basolateral surface of type 2 AECs appeared to adhere normally to the basement membrane (Figure 4A), we noticed that there were more type 2 AECs in β1rtTA than β1fl/fl mice (Figure 4, B and C). The excess of type 2 AECs, evidenced by pro–SP-C–positive staining, was due to increased cellular proliferation that was identified by Ki-67 immunostaining (Figure 4, D and E). In contrast, no differences in the number of apoptotic type 2 AECs between β1rtTA and β1fl/fl lungs were observed, as demonstrated by dual TUNEL+pro–SP-C+ cells (Figure 4, F and G). Thus, deletion of β1 integrin in AECs from 3-month-old adult mice caused subtle structural defects with abnormal tight junctions that likely allowed for paracellular fluid flux leak and type 2 AEC proliferation. Proliferation of type 2 AECs is a well-known feature of inflammatory lung diseases and a recognized consequence of lung injury (29–35); therefore, this finding suggests an ongoing injury-repair cycle.
β₁ Integrin–deficient type 2 AECs induce increased efferocytosis. We next performed in-depth analysis of the inflammatory status of β₁ integrin–deficient mice. When we examined aged β₁rtTA mice, we noted that pro–SP-C staining often colocalized with CD68, suggesting that macrophages phagocytosed AECs in β₁rtTA but not β₁f/f lungs (Figure 5A). This observation is consistent with efferocytosis, a tightly regulated process by which phagocytic cells ingest diseased or dying cells, thereby minimizing inflammation in the microenvironment (36–39). To define the mechanisms whereby this occurred, we cultured primary type 2 AECs and measured secretion of CX3CL1, a “find me” chemokine that attracts phagocytes (40, 41). We also assessed the expression levels of Cd47, whose gene product is an inhibitory “don’t eat me” signal, in freshly isolated primary type 2 AECs (41, 42). We found increased CX3CL1 production and reduced Cd47 mRNA expression by β₁rtTA type 2 AECs relative to type 2 AECs isolated from β₁f/f mice (Figure 5, B and C). These findings support the conclusion that macrophage efferocytosis of β₁ integrin–deficient type 2 AECs is prominent in β₁rtTA lungs.

Deleting CCL2-recruited monocytes/macrophages causes severe destruction of alveolar architecture in β₁rtTA mice by decreasing AEC efferocytosis. Our histological examination of both aged and 3-month-old β₁rtTA lungs suggested increased inflammation. Since β₁rtTA lungs had increased macrophages, and β₁-null type 2 AECs exhibited markers of efferocytosis, we tested whether impairment of macrophage recruitment would disrupt homeostasis in 3-month-old β₁rtTA mice. To target these recruited immune cell populations, we crossed β₁rtTA mice to the Ccr2-null background. CCR2 is the receptor for CCL2, one of the primary monocyte chemokines in the lung. CCR2−/−β₁rtTA mice and their CCR2−/−β₁rtTA littermate controls received dox from P28 until 2 months of age in the same manner as β₁f/f and β₁rtTA mice. In contrast to β₁rtTA mice, 3-month-old CCR2−/−β₁rtTA mice exhibited dramatically enhanced lung pathology (Figure 6, A and B), with widespread emphysematous destruction; marked airspace enlargement, quantified by mean linear intercept (Figure 6C); increased inflammatory infiltrates (arrows in Figure 6B); and increased BALF cell counts (Figure 6D). CCR2−/−β₁rtTA mice exhibited a large number of CD68+ macrophages (Figure 6, E and F) despite loss of CCL2 recruitment due to excessive proliferation of existing resident macrophages as verified by increased Ki-67 staining (Supplemental Figure 3, A–C).
A large increase in pro–SP-C+ type 2 AECs accompanied the expanded immune cell population (Figure 6E, quantified in Figure 6G). Immunostaining for Ki-67 demonstrated that depletion of CCL2-driven monocytes/macrophages did not change the proliferation rate of AECs compared with β1rtTA mice (Supplemental Figure 3, D and E). These findings indicate that the increase in epithelial cell numbers in β1rtTA mice was due to impaired AEC removal rather than increased AEC proliferation. Despite numerous macrophages and an overabundance of type 2 AECs, there was almost no colocalization of CD68 and pro–SP-C in CCR2–/–;β1rtTA mice (Figure 6H, quantified in Figure 6I), suggesting minimal efferocytosis in these mice. To directly test whether macrophages from CCR2–/–;β1rtTA mice were defective in efferocytosis, we collected macrophages from bronchoalveolar lavage and exposed these cells to fluorescently labeled primary type 2 AECs from β1rtTA mice (Figure 6J). While macrophages from β1rtTA and β1f/f lungs briskly engulfed β1-deficient AECs, macrophages from CCR2-deficient mice (both CCR2–/–;β1rtTA and CCR2–/–;β1f/f) ingested far fewer labeled AECs, demonstrating that CCR2-deficient macrophages were less efficient efferocytosis agents. These data strongly suggest that the more severe phenotype in the CCR2–/–;β1f/f mice is caused by their inability to remove deranged type 2 AECs and that the efferocytosis function of CCL2-recruited macrophages is to limit inflammation and mitigate lung damage in β1rtTA mice.

CD11b+CD11c+ monocytes/macrophages efferocytose type 2 AECs in β1rtTA mice. We next examined the immune cell population in the whole lung by flow cytometry. β1rtTA lungs contained increased CD45+CD11b+CD11c+ immune cells, markers consistent with recently recruited monocyte–early macrophages (Figure 7A, gating strategy in Supplemental Figure 4; and refs. 43, 44). We identified this as a mixed population, as cells expressed the monocyte marker Ly6C, the macrophage marker CD64, or both (Figure 7B). Since the CD11b+CD11c+ immune cells were differentially enriched in β1rtTA mice, we collected this population by FACS, cytospinned the cells, and immunostained for pro–SP-C and CD68 to determine whether these cells contributed to the increased efferocytosis seen in β1rtTA mice. We found that 68% ± 4% of monocytes/macrophages collected from β1rtTA lungs contained pro–SP-C+ material compared with 14% ± 2% of these cells from β1f/f lungs (Figure 7, C and D). To functionally phenotype these cells in β1rtTA mice, we collected media from cultured monocytes/macrophages and assayed for cytokine production by cytokine multiplex. The β1rtTA monocyte-macrophage population secreted only scant amounts of inflammatory cytokines/chemokines, equivalent to expression levels by cells from β1f/f mice (Supplemental Table 1). Taken together, these data demonstrate that CD11b+CD11c+ monocytes/macrophages are critical effector cells for efferocytosis but do not directly contribute to the inflammatory state of β1rtTA mice.

β1 Integrin regulates AEC inflammation. Our data thus far suggest that the β1 integrin–null cells provide an inflammatory stimulus resulting in monocyte-macrophage chemotraction into the alveolus. These recruited cells function as efferocytic agents but do not contribute to the inflammatory status of the lungs.
Next, we tested whether $\beta_1$-deficient AECs drive the inflammatory phenotype in lungs of $\beta_1^{\text{rtTA}}$ mice. Ten of 32 cytokines (31%), including mediators of macrophage chemotaxis and maturation, were significantly increased in the culture media of $\beta_1^{\text{rtTA}}$ AECs compared with that of $\beta_1^{f/f}$ AECs (Figure 8A and Supplemental Table 2). To define the consequence of increased AEC inflammatory signaling in the whole lung, we performed multiplex analysis on tissue lysates (Figure 8B and Supplemental Table 3). Multiple inflammatory mediators were increased in lungs of $\beta_1^{\text{rtTA}}$ mice compared with $\beta_1^{f/f}$ controls. Even further increases were seen in CCR2$^{-/-}; \beta_1^{\text{rtTA}}$, where inflamed $\beta_1$-deficient type 2 AECs remained unchecked by efferocytosis. Since many of the cytokines increased in $\beta_1^{\text{rtTA}}$ and CCR2$^{-/-}; \beta_1^{\text{rtTA}}$ lungs were recognizable gene products of NF-$\kappa$B signaling (including KC, IL-6, MIP-2, and G-CSF), we
performed immunohistochemistry for activated NF-κB in β1 integrin–deficient AECs (Figure 8, C and D). Immunofluorescence staining for phospho-p65 (S276), a well-recognized marker of NF-κB activation (45), revealed numerous phospho-p65+ pro–SP-C+ type 2 AECs in lungs from β1rtTA mice and CCR2–/–;β1rtTA mice. Other cell types, in addition to type 2 AECs, exhibited NF-κB activation in β1rtTA and CCR2–/–;β1rtTA lungs. These findings indicate that β1 integrin deficiency results in a pervasive inflammatory environment in the distal lung with contributions from retained β1-deficient type 2 AECs.

β1-Deficient AEC inflammatory mediators are produced as a consequence of ROS generation. Since the generation of ROS has been linked to NF-κB–dependent cytokine expression in epithelial cells and β1-containing integrins have been shown to modulate ROS signaling (46–50), we measured ROS production in cultured type 2 AECs. We found that β1rtTA type 2 AECs produced more superoxide (O2−) and hydrogen peroxide (H2O2) than β1f/f cells (Figure 9, A and B); however, no differences in mitochondria-derived ROS were detected (Figure 9C). Given the increase in O2− generation, we investigated whether the NADPH oxidase (NOX) system was upregulated in cells from β1rtTA mice and CCR2−/−;β1rtTA mice. Other cell types, in addition to type 2 AECs, exhibited NF-κB activation in β1rtTA and CCR2−/−;β1rtTA lungs. These findings indicate that β1 integrin deficiency results in a pervasive inflammatory environment in the distal lung with contributions from retained β1-deficient type 2 AECs.

To define whether ROS production stimulated NF-κB–dependent cytokine expression, we measured levels of CCL2, a known downstream cytokine product of NF-κB activation (51–53). We treated type 2 AECs isolated from β1rtTA and β1f/f mice with a superoxide dismutase mimetic (TEMPOL) or a pan-NOX inhibitor (DPI) and measured CCL2 concentration in the media by ELISA. Both TEMPOL and DPI...
treatment decreased CCL2 secretion by β1rtTA type 2 AECs (Figure 9, E and F). Although a specific Duox1 inhibitor is not available, we narrowed down the NOX subunits potentially regulated by β1 integrin using the NOX1/4 inhibitor GKT137831 (Figure 9G). In contrast to the pan-NOX inhibitor DPI, treatment with GKT137831 did not reduce CCL2 secretion from β1rtTA type 2 AECs, implicating NOX2, Duox1, and/or Duox2 as the source of increased ROS in β1rtTA mice. As Duox1 was the only NOX isoform with increased expression, these data suggest that β1 integrin regulates ROS production through this isoform in AECs.

To test whether ROS-dependent CCL2 production by β1rtTA type 2 AECs was in part responsible for increased macrophage infiltration in β1rtTA mice, we performed chemotaxis assays using WT macrophages collected by bronchoalveolar lavage and conditioned media from cultured type 2 AECs from β1rtTA and β1f/f mice. Macrophage migration toward media from β1rtTA type 2 AECs was greatly enhanced compared with media from control cells, and this increase was completely abrogated by treatment with DPI or neutralizing antibodies to CCL2 (Figure 9H). These findings support the conclusion that β1rtTA type 2 AECs have persistent ROS production that contributes to CCL2 secretion that induces macrophage migration into the airspaces of β1rtTA mice.

Discussion

While numerous studies have defined the critical role of integrins in organ morphogenesis, few have examined their role in tissue homeostasis in adults. In the setting of development, phenotypic severity is highly correlated with timing of integrin deletion after conception and is primarily ascribed to defects in cell adhesion and migration. In this study, we defined the role of β1 integrin in the structurally stable, fully formed alveolus of the lung, where epithelial cells undergo slow turnover and are tightly bound to the basement membrane. We show that deleting β1 integrin in AECs under these circumstances results in emphysema, a condition characterized by destruction/loss of gas exchange units and chronic inflammation. Surprisingly, there were no adhesion defects in the AECs in our model; however, these cells were highly inflamed, with excessive ROS production that caused increased NF-κB–dependent cytokine production. Thus, β1 integrin in alveolar epithelial cells has an antiinflammatory role and is required for alveolar homeostasis in the lung.

Our studies provide direct evidence that mice with a targeted deletion of β1 integrin in type 2 AECs develop aging-related, spontaneous emphysema as quantified by mean linear intercept. This method easily captures one component of the emphysematous phenotype, enlargement of airspaces. Although we did not perform stereological analysis to address alveolar number specifically, we took precautions...
in our studies to minimize bias in our 2D morphological measurements from sampling (25–27). Loss of β1 integrin in AECs stimulates ROS production and NF-kB signaling, and subsequently released inflammatory mediators recruit and activate a mixed population of monocytes/macrophages that efferocytose the β1-deficient AECs. One possible mechanism for the development of emphysema is that macrophages mediate lung destruction via altered protease/antiprotease balance (54–56). These observations are consistent with studies demonstrating a role for excessive ROS and NF-kB activation as initiators of macrophage accumulation and subsequent alveolar injury, resulting in emphysema (57–59). In addition, epithelial apoptosis in combination with ineffective efferocytosis could contribute to the development of emphysema. Both epithelial and endothelial apoptosis can contribute to emphysema independent of inflammation (60–62). Consistent with these potential explanations for development of emphysema in our model, blocking efferocytosis has been shown to potentiate alveolar destruction in murine models of elastase-induced emphysema associated with increased MMP2 and -12 expression (63). It is unclear whether loss of efferocytosis with its antiinflammatory effects or the retention of inflamed β1-deficient AECs causes emphysema. However, our data indicating that there is no phenotypical difference in the efferocytosing monocytes/macrophages suggest that retained β1-deficient AECs are the primary driver of emphysema in β1rtTA mice. Our data also confirmed and extended studies that indirectly implicated β1-containing integrins in the pathogenesis of emphysema. Mice with impaired fucosylation exhibit an emphysematous lung phenotype, and fucosylation is required for normal α3β1 integrin–dependent migration and signaling, suggesting that the phenotype is due to impaired α3β1 integrin function (64, 65).

Similarly, fibulin 5−/− mice have enlarged airspaces at birth that progressively dilate into adulthood (66). Fibulin 5 is a ligand for αvβ3, αvβ5, and α9β1 integrins, participates in outside-in integrin signaling, and is crucial for proper assembly of elastic fibers (66, 67).
We show that the inflammatory phenotype of β₁ integrin–deficient AECs, as manifested by increased NF-κB signaling and cytokine production, is mediated at least in part by excessive ROS production. While this phenomenon is well documented in multiple other cell types (68–70), the mechanisms whereby integrins regulate ROS production are poorly understood. Our studies implicate β₁ integrin as a critical negative regulator of the NOX isoform Duox1 in AECs. Previous studies reported that β₁ integrin negatively regulates ROS production through NOX2 in chondrocytes and kidney mesangial cells (46, 47, 71, 72). Thus, integrins play a critical role in regulating ROS production in multiple cell types; however, the mechanisms appear to be cell type specific.

One of the most interesting observations in our study was that genetic depletion of CCR2, which blocks CCL2-mediated recruitment of monocyte-derived macrophages, exacerbates alveolar remodeling in adult β₁–deficient mice. This contrasts with our previous observation that chemical depletion of macrophages using intranasal instillation of clodronate during lung development rescues alveolarization defects (22). These findings expose differential functions of macrophage subtypes and their potentially paradoxical roles in the adult versus developing lung. In development, fetal lung macrophages are essential for normal lung morphogenesis. They actively clear mesenchymal cells through phagocytosis during sacculation, and their response to inflammatory stimuli regulates airway branching through modulation of developmental signals (36–39, 73–75). During homeostasis, macrophages are required for regulation of inflammatory signaling, host defense, and wound healing (76, 77). The majority of effectorcytosis activity following injury is accomplished by macrophages, but more recent data suggest that monocytes significantly contribute to effectorcytosis and antigen presentation in the presence of apoptotic cells (78). Although monocytes and macrophages effectorcytose dying cells during acute injury, their role in chronic inflammation is less well defined (78, 79).

In our model, deranged type 2 AECs are effectorcytosed by the CD11b⁺CD11c⁻ monocyte/macrophage population. This is likely a mix of newly recruited monocytes and monocytes transitioning into macrophages. In β₁rtTA mice, homeostatic compensation fails with loss of CCL2-driven monocyte-macrophage recruitment, resulting in an escalation of inflammation associated with diminished effectorcytosis. Although determining why CCL2-recruited monocytes/macrophages are necessary for efficient effectorcytosis of type 2 AECs will require further study, this finding could have direct implications for human lung diseases, including COPD, in which ineffective effectorcytosis has been suggested to be a contributor to pathogenesis (80–86).

Aside from regulating inflammation, β₁ integrin is required for other critical cellular processes in type 2 AECs, including maintenance of tight junctions and control of proliferation. Microscopic examination of
β1rtTA mice revealed abnormal tight junctions associated with decreased Claudin-3 and Claudin-4 expression. Consistent with this observation, proximal kidney tubule cells with β1 integrin deletion exhibit altered Claudin-2 expression (87). Our epithelial β1–null mice also share many phenotypic similarities with claudin-deficient mice. Unchallenged claudin-4–deficient mice have normal lung histology but exhibit significantly

Figure 8. Loss of β1 integrin results in widespread lung inflammation. (A) Increased proinflammatory cytokines in media collected from β1rtTA type 2 AECs compared with β1f/f type 2 AECs. n = 11–12 mice/group. (B) β1rtTA and CCR2−/−β1rtTA lungs exhibit increased proinflammatory cytokines in whole lung tissue lysate by cytokine multiplex assay. n = 4–6 mice/group. (C) Immunostaining for phospho-p65 (red) and the type 2 AEC marker ABCA3 (green) demonstrates increased NF-κB activation in type 2 AECs and throughout the tissue in β1rtTA and CCR2−/−β1rtTA lungs, as quantified in D. Fewer than 10 sections/mouse; n = 4 mice/group. Scale bars: 50 μm in C, 10 μm for insets. *P < 0.05 by 1-way ANOVA with secondary analysis by Tukey’s test for multiple comparisons. a: β1f/f vs. CCR2−/−β1rtTA, b: CCR2−/−β1f/f vs. CCR2−/−β1rtTA, c: β1rtTA vs. CCR2−/−β1rtTA.
increased BALF cell counts with hyperoxia exposure and increased CCL2 signaling with mechanical ventilation (88). In addition, claudin-18–null mice develop AEC hyperplasia and macrophage accumulation over time (89–91). Although a causal relationship between $\beta_1$ integrin and claudins has not been described, previous in vitro studies demonstrated that ROS can disrupt tight junctions (92–94), suggesting that $\beta_1$ integrin–mediated ROS could regulate tight junctions via effects on claudin expression. Another phenotype identified in $\beta_1^{\text{f/f}}$ mice is AEC proliferation. Developmental deletion of $\beta_1$ integrin decreases epithelial
proliferation in the kidney, mammary, and submandibular glands (11, 15, 19, 21, 22), whereas increased epithelial proliferation has been reported when β1 integrin was deleted in the intestine or skin (14, 17). The mechanisms whereby β1 integrin regulates cell number/density in fully formed organs is unknown; however, this could also be ROS mediated, since multiple investigations have shown that ROS can stimulate cell proliferation.

In conclusion, this study shows that loss of β1 integrin in type 2 AECs promotes persistent lung inflammation and emphysematous remodeling, which is mitigated by efferocytosis of inflamed AECs by CD11b+CD11c+ monocytes/macrophages. Thus, regulation of inflammation is the major function of β1 integrin in alveolar homeostasis in the lung.

Methods

Mice. For timed deletion of β1 integrin, we crossed transgenic mice with inducible Cre recombinase expression by the dox-inducible reverse tetracycline transactivator under control of the SP-C promoter (SP-C rtTA;Tet-O-Cre) with integrin β1f/f mice (95, 96). Postdevelopmental type 2 AEC deletion was induced on P28 in these triple transgenic SP-C rtTA;Tet-O-Cre; β1f/f mice (called β1fTA mice) using dox in drinking water (2 g/L × 4 weeks). Control littermate β1f mice received identical dox treatment. To test the role of β1 integrin in epithelial differentiation during alveolar homeostasis, we crossed β1fTA mice to the mTmG Cre recombinase reporter.

To test the role of CCL2-recruited monocytes/macrophages in β1 integrin–regulated alveolar homeostasis, we crossed β1fTA and β1f mice onto a homozygous null background for Ccr2, the CCL2 receptor. The resulting transgenic CCR2−/−;SP-C rtTA;Tet-O-Cre; β1fTA mice (termed CCR2−/−;β1fTA mice) and control littermate CCR2−/−;β1f mice, received identical dox treatment on P28 to induce β1 integrin deletion. Integrin β1f mice were a gift from Elaine Fuchs (Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA). SP-C rtTA, Tet-O-Cre, Ccr2 homozygous null, and mTmG Cre recombinase reporter mice were purchased from the Jackson Laboratory. All mice were on a C57BL/6 background.

Histology and morphological analysis. Lungs from β1fTA, β1f, CCR2−/−;β1fTA, and CCR2−/−;β1f mice were harvested for histological examination. Mice were sacrificed, right ventricle flushed with PBS, and lung inflation fixed at 25 cm with 10% formalin for more than 24 hours prior to paraffin embedding and sectioning. Multiple lobes were sectioned to reduce bias in morphological analysis generated from regional differences in alveolar size (25–27). Mean linear intercept was calculated from images obtained using a Keyence BZ-X710 inverted fluorescence phase contrast microscope with ×40 objective for 6–10 nonoverlapping sections per mouse. For immunohistochemistry stains, paraffin sections were deparaffinized, antigen retrieved, blocked, and incubated with the indicated primary antibody, followed by colorimetric detection by Vector Red (Vector Laboratories). Stained paraffin sections were imaged using a Keyence BZ-X710 inverted fluorescence phase contrast microscope with ×20 objective lens (low-power images) or an Olympus BX41 with ×60 objective lens (high-power images). Immunofluorescence staining was performed on frozen lung sections that were inflation fixed with 2:1 PBS/O.C.T. mixture (Tissue-Tek), embedded, and sectioned at 8-μm thickness. Slides were subsequently fixed with 4% paraformaldehyde, permeabilized with 0.1% Triton-X, blocked with 5% donkey serum, incubated in primary antibody overnight at 4°C, incubated in secondary antibody for 2 hours at room temperature, incubated with DAPI nuclear stain (Vector Laboratories) and imaged using a Keyence BZ-X710 inverted fluorescence phase contrast microscope with ×40 objective lens (high-power images).

TEM. Lungs were harvested from 3-month-old β1fTA and β1f mice, processed, postfixed with potassium ferrous cyanide, dehydrated with graded acetone, thick sectioned at 1 μm, thin sectioned at 80 nm in the region of interest, and imaged using a Philips FEI T-12 transmission electron microscope in the Vanderbilt Cell Imaging Shared Resource core.
Bronchoalveolar lavage. Sterile saline lavages were performed with 1 mL PBS after sacrifice. Lavage fluid was centrifuged at 270 g at 4°C, and cells were resuspended and counted. The Pierce BCA Protein Assay kit (Thermo Fisher Scientific, 23225) was used to test for BALF protein per the manufacturer’s instructions. For immunofluorescence analysis of immune cells collected by bronchoalveolar lavage, 40,000 cells were spun onto Shandon cytoslides (Thermo Fisher Scientific) at 240 g for 7 minutes, dried, and immunostained per the above protocol.

AEC isolation and collection of conditioned medium. Type 2 AECs were isolated from 3-month-old β1rtTA and β1f/f mice as previously described, yielding more than 90% type 2 AECs (22, 97, 98). Briefly, a single-cell suspension was generated with a 40-minute dispase digestion and 100-μm, 40-μm, and-20 μm serial filtration. The suspension was then incubated at 37°C for 2 hours in anti-CD45 (BD 553076) and anti-CD32 (BD 553142) antibody–coated plates for negative selection. The medium containing epithelial cells was collected and spun down, and AECs were plated in 5% bronchial epithelial cell growth medium (BEGM) on Matrigel-coated wells with or without the indicated treatment. Treatment reagents included TEMPO (Sigma-Aldrich 176141) and DPI (Sigma-Aldrich D2926). Medium was collected at 24 hours for analysis.

Western blotting. Protein (60 μg) collected from type 2 AEC isolations was electrophoresed in a 10% gel and transferred onto nitrocellulose membranes. Membranes were blocked, incubated with primary antibody (anti-β1 integrin [Millipore MAB1997], anti–claudin-3 [Invitrogen 341700], anti-GAPDH [Invitrogen MA5-15738]), and incubated with Odyssey IRDye 800CW and 680RD secondary antibodies. Signal was detected using a LI-COR Odyssey CLx Near-Infrared Western Blot Detection system.

qPCR. RNA was isolated from freshly isolated primary type 2 AECs using the RNEasy Plus Mini Kit (QIAGEN) and cDNA synthesized using the SuperScript VILO Master Mix kit (Thermo Fisher Scientific). qPCR reactions were performed in triplicate using TaqMan PCR Fast Advanced Master Mix (Applied Biosystems, Thermo Fisher Scientific) on a StepOne Plus PCR System (Applied Biosystems) using the following TaqMan probes (Applied Biosystems, Thermo Fisher Scientific): Claudin-4 Mm00515514_s1, Claudin-18 Mm00517321_m1, CD47 Mm00495011_m1, Duox1 Mm01328685_m1, Duox2 Mm01326247_m1, Nax1 Mm00549170_m1, Nax2 Mm01287743_m1, Nax4 Mm00479246_m1, and GAPDH Mm99999915_g1. Data were normalized to the housekeeping gene GAPDH. Relative quantities were analyzed using β1f/f values as control.

ELISA and multiplex assay. ELISA for CCL2 and CX3CL1 on AEC conditioned media was performed in triplicate according to the manufacturer’s instructions (R&D Systems, MJE00 and MCX310, respectively). Cytokine/chemokine Magnetic Bead 32-Multiplex Panel (Millipore MCYT0AG-70K-PX32) assay was performed on monocyte/macrophage conditioned media, AEC conditioned media, and whole lung tissue lysates in triplicate per the manufacturer’s instructions. Tissue lysates were generated by sonicating the right upper lobe, centrifuging the tissue mixture, collecting the supernatant, and normalizing to protein. The Multiplex assay was read on the Luminex MAGPIX platform in the Vanderbilt Hormone and Analytical Services Core.

Flow cytometry. We used collagenase XI (Sigma-Aldrich C7657, 0.7 mg/mL) and IV DNAse (Sigma-Aldrich D5025, 30 μg/mL) digestion and 40-μm filtration to obtain a single-cell whole lung suspension for flow cytometry analysis. Briefly, cells were blocked with anti-CD32 antibody (BD 553142), incubated with conjugated primary antibody, and analyzed using a 5-laser BD LSR II analytical flow cytometer (BD Biosciences) and FlowJo analysis software (Becton, Dickinson, and Co.). Both single antibody and fluorescence-minus-one controls were used for compensation. The following primary conjugated antibodies were used in flow cytometry experiments: CD45-BV650 (BioLegend 103151), CD64-APC (BioLegend 139306), CD11b–PE-Cy7 (BD 561098), CD11c–PE-Cy5 (eBioscience 15-0114-82), and Ly6C-APC-Cy7 (BD 560596).

Efferocytosis assay. Macrophages collected by bronchoalveolar lavage (5 × 10⁴ cells/well) were plated for 4 hours in serum-free media and exposed to fluorescently labeled primary type 2 AECs (Millipore 382065) from β1rtTA mice (1 × 10⁵ cell/well) for 1 hour. After incubation, nonadherent cells were removed by careful washing, and fluorescence was detected on a Molecular Devices SpectraMax M5 Plate Reader.

Macrophage migration assay. Conditioned medium from primary β1rtTA and β1f/f AECs was placed in the bottom chamber of a 5-μm Transwell insert (Corning 3422). WT macrophages (40,000 per insert) were obtained from pooled BALF and placed in the top chamber, incubated at 37°C for 4 hours. Unmigrated macrophages were removed from the top chamber, while migrated macrophages were fixed to the underside of the Transwell membrane and stained using the spHema 3 Manual Staining System.
Five nonoverlapping images of stained migrated macrophages were taken, and the number of migrated cells/field was quantified.

**ROS assays.** LumiMax Superoxide Anion Detection Kit (Agilent Technologies 204525) was used to detect superoxide from primary type 2 AECs per the manufacturer’s instructions. Amplex Red assay (Invitrogen, Thermo Fisher Scientific A22188) was used to detect H$_2$O$_2$ released from primary type 2 AECs per the manufacturer’s instructions. MitoSOX assay (Thermo Fisher Scientific M36008) was performed on primary type 2 AECs per the manufacturer’s instructions. For inhibitor studies, we used TEMPOL (Sigma-Aldrich 176141, 2 mM) and DPI (Sigma-Aldrich D2926, 10 μM).

**Statistics.** A 2-tailed Student’s t test was used for comparisons between 2 groups, with results representing mean SEM. For comparisons between 3 or 4 groups, an ordinary 1-way ANOVA was used with secondary analysis by Tukey’s test for multiple comparisons as indicated. For both statistical analyses, P < 0.05 was considered statistically significant.

**Study approval.** All animal experiments were approved by the Vanderbilt University Medical Center Institutional Animal Care and Use Committee.

**Author contributions**

EJP, JTB, JMS, PMG, LAG, SK, SMH, VVP, and WH designed and performed experiments and analyzed data. EJP, TSB, RZ, and LRY conceived the study and designed experiments. EJP, TSB, LRY, RZ, AP, and SHG wrote and edited the manuscript.

**Acknowledgments**

This work was supported by NIH grants K08 HL127102 (EJP), K08 HL133484 (JTB), R01 DK069921 (RZ), P01 HL092870 (TSB), R01 DK119212 (AP), R01 HL119503 (LRY), R01 GM108807 (SHG), and 5K12HD087023 (JMS); the Francis Family Foundation (JMS); and US Department of Veteran Affairs grants IO1 BX002196 (RZ), IO1 BX002378 (TSB), and IO1 BX002025 (AP). AP is the recipient of a Veterans Affairs Senior Research Career Scientist Award. The authors would like to thank Brittany Matlock, Cathy Alford, Bryan Millis, Riet van der Meer, and Janice Williams for technical assistance. Experiments were performed in part through the use of the Vanderbilt Cell Imaging Shared Resource (supported by NIH grants CA68485, DK20593, DK58404, DK59637, and EY08126). Flow cytometry experiments were performed in the VMC Flow Cytometry Shared Resource. The VMC Flow Cytometry Shared Resource is supported by the Vanderbilt Ingram Cancer Center (P30 CA68485) and the Vanderbilt Digestive Disease Research Center (DK058404).

Address correspondence to: Erin Plosa, 2215B Garland Avenue, 1125 MRB4/Light Hall, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA. Phone: 615.343.4876; Email: erin.plosa@vumc.org.

49. Honoré S, Kovacic H, Pichard V, Briand C, Rognoni JB. Alpha2beta1-integrin signaling by itself controls G1/S transition in
48. Borza CM, et al. Inhibition of integrin
47. Chen X, et al. Integrin alpha1beta1 controls reactive oxygen species synthesis by negatively regulating epidermal growth factor

79. Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end.


76. Hendrix AY, Kheradmand F. The role of matrix metalloproteinases in development, repair, and destruction of the lungs.

75. Abboud RT, Vimalanathan R. Chronic NF-κB activation links COPD and lung cancer through generation of an immunosuppressive microenvironment in the lungs.

74. Henson PM, Hume DA. Apoptotic cell removal in development and tissue homeostasis.


70. Tuder RM, Petrache I, Elias JA, Voelkel NF, Henson PM. Apoptosis and emphysema: the missing link.


63. Aoshiba K, Yokohori N, Nagai A. Alveolar wall apoptosis causes lung destruction and emphysematous changes.


53. Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end.

