Obesity-related insulin resistance is associated with intramyocellular lipid accumulation in skeletal muscle. We hypothesized that in contrast to current dogma, this linkage is related to an upstream mechanism that coordinately regulates both processes. We demonstrate that the muscle-enriched transcription factor MondoA is glucose/fructose responsive in human skeletal myotubes and directs the transcription of genes in cellular metabolic pathways involved in diversion of energy substrate from a catabolic fate into nutrient storage pathways including fatty acid desaturation and elongation, triacylglyceride (TAG) biosynthesis, glycogen storage, and hexosamine biosynthesis. MondoA also reduces myocyte glucose uptake by suppressing insulin signaling. Mice with muscle-specific MondoA deficiency were partially protected from insulin resistance and muscle TAG accumulation in the context of diet-induced obesity. These results identify MondoA as a nutrient-regulated transcription factor that under normal physiological conditions serves a dynamic checkpoint function to prevent excess energy substrate flux into muscle catabolic pathways when myocyte nutrient balance is positive. However, in conditions of chronic caloric excess, this mechanism becomes persistently activated leading to progressive myocyte lipid storage and insulin resistance.
MondoA Drives Muscle Lipid Accumulation and Insulin Resistance

Byungyong Ahn1, Shibiao Wan2, Natasha Jaiswal2, Rick B. Vega3, Donald E. Ayer4, Paul M. Titchenell2, Xianlin Han5, Kyoung Jae Won2, Daniel P. Kelly1*

1Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
2Institute for Diabetes, Obesity and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
3Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, 32827, USA
4Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, 84112 USA
5Barshop Institute for Longevity and Aging Studies, Departments of Medicine and Biochemistry, University of Texas Health-San Antonio, San Antonio, TX 78229, USA

Current affiliation for Kyoung Jae Won: Biotech Research and Innovation Centre (BRIC), Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark

Keywords: myocyte, insulin resistance, gene transcription, nutrient excess, nutrient storage

Conflict of Interest: The authors have declared that no conflict of interest exists.

*Corresponding Author
Daniel P. Kelly, M.D.
Perelman School of Medicine
University of Pennsylvania
3400 Civic Center Blvd., Bldg 421
Smilow Translational Research Center, Room 11-122
Philadelphia, PA 19104
Phone: (215) 898-0768
dankelly@pennmedicine.upenn.edu
ABSTRACT
Obesity-related insulin resistance is associated with intramyocellular lipid accumulation in skeletal muscle. We hypothesized that in contrast to current dogma, this linkage is related to an upstream mechanism that coordinately regulates both processes. We demonstrate that the muscle-enriched transcription factor MondoA is glucose/fructose responsive in human skeletal myotubes and directs the transcription of genes in cellular metabolic pathways involved in diversion of energy substrate from a catabolic fate into nutrient storage pathways including fatty acid desaturation and elongation, triacylglyceride (TAG) biosynthesis, glycogen storage, and hexosamine biosynthesis. MondoA also reduces myocyte glucose uptake by suppressing insulin signaling. Mice with muscle-specific MondoA deficiency were partially protected from insulin resistance and muscle TAG accumulation in the context of diet-induced obesity. These results identify MondoA as a nutrient-regulated transcription factor that under normal physiological conditions serves a dynamic checkpoint function to prevent excess energy substrate flux into muscle catabolic pathways when myocyte nutrient balance is positive. However, in conditions of chronic caloric excess, this mechanism becomes persistently activated leading to progressive myocyte lipid storage and insulin resistance.
INTRODUCTION

Obesity-related insulin resistance is strongly associated with intracellular neutral lipid accumulation in extra-adipose tissues such as skeletal muscle and liver (1-3). This observation is highly relevant in muscle given the importance of this tissue for whole body insulin-stimulated glucose disposal and systemic insulin sensitivity. However, the mechanistic links between intramyocellular lipid (IMCL) accumulation and the development of insulin resistance are incompletely understood. There is evidence to suggest that the myocyte lipid storage depot per se is not a culprit in the development of insulin resistance and may even serve a protective function (4, 5). Rather, lipid intermediates have been shown to affect insulin-stimulated glucose uptake (6, 7). For example, diacylglycerol (DAG) species have been shown to activate protein kinase C-ε and θ isoforms that can exert an inhibitory phosphorylation upon the insulin receptor substrate-1 (IRS-1), blocking the downstream actions of the insulin receptor (8, 9). Ceramides and reactive oxygen species have also been shown to contribute to insulin resistance in certain contexts (10, 11). In addition, intermediates of incomplete fatty acid oxidation have been implicated in the development of muscle insulin resistance (12). However, the role of such processes as primary drivers of insulin resistance related to cellular lipid imbalance versus serving as downstream effectors is unclear.

We hypothesized that the linkage between myocyte lipid accumulation and insulin resistance in the context of chronic caloric excess involves a common upstream mechanism. As an initial step to explore this possibility we previously conducted a high throughput chemical biology screen (13). This screen identified a small molecule probe (SBI-477) that inhibited myocyte triacylglyceride (TAG) levels and enhanced glucose uptake in human skeletal myotubes (14). A related compound exerted similar effects in vivo in mice (14). We found that one of the
downstream effects of SBI-477 was deactivation of the glucose-regulated transcription factor MondoA (15-19), a muscle-enriched relative of carbohydrate response element binding protein (ChREBP). Interestingly, MondoA is known to induce the expression of two insulin pathway suppressors, thioredoxin-interacting protein (TXNIP) and arrestin domain–containing 4 (ARRDC4) (16, 18). These results suggested the intriguing possibility that MondoA may provide the elusive link between the control of myocyte lipid accumulation and insulin signaling under conditions of nutrient excess by serving as an upstream regulator of both cellular processes.

In this study we probed the potential role of MondoA in the coordinate regulation of myocyte lipid accumulation and insulin signaling in muscle under conditions of normal and positive caloric balance. We found that MondoA is activated in skeletal myocytes by glucose or fructose to direct skeletal myocyte fatty acids into triacylglycerol (TAG) storage and serves as a negative gatekeeper of myocyte glucose import. Accordingly, MondoA deficiency rendered mice insulin sensitive with reduced muscle neutral lipid accumulation in the context of diet-induced obesity. These results support the conclusion that in contrast to current dogma, the well-described linkage between myocellular lipid accumulation and insulin resistance under conditions of caloric excess reflects a conserved common upstream control mechanism.
RESULTS

The activity of MondoA is regulated by nutrient availability in human skeletal myotubes. We first sought to determine whether nutrient availability regulates MondoA in human skeletal myotubes. To this end, we monitored the expression of two known MondoA target genes, thioredoxin interacting protein (TXNIP) and arrestin domain-containing protein 4 (ARRDC4) (14, 16) in different nutrient conditions. TXNIP mRNA and protein levels were rapidly and markedly reduced by glucose starvation (Figure 1A) and recovered upon refeeding (Figure 1B) similar to what has been described in other cell types (18, 19). ARRDC4 expression was regulated in a similar manner (Supplemental Figure 1A, B). The induction of TXNIP and ARRDC4 by glucose was abolished in the context of siRNA-mediated knockdown (KD) of MondoA (MLXIP) (Figure 1C and Supplemental Figure 1C). Notably, cellular MondoA levels were not altered by glucose levels (Supplemental Figure 1A, B). However, occupation of MondoA on TXNIP and ARRDC4 promoter regions containing known carbohydrate response elements (ChoREs) was significantly reduced by glucose starvation and recovered upon refeeding (Figure 1D). These latter results are consistent with the known post-translational regulation of MondoA via nuclear to cytosolic shuttling (14, 16).

We next sought to determine the impact of other nutrients on MondoA activity. Starvation-refeeding with a variety of long-chain fatty acids did not affect TXNIP levels (Figure 1E). Similarly, refeeding with beta-hydroxybutyrate (BHB) or branched-chain amino acids (BCAA) did not change TXNIP levels (Figure 1F). In contrast, fructose refeeding resulted in an induction of TXNIP levels to approximately 50% that of glucose when given at an equimolar concentration (Figure 1F). Taken together, these results demonstrate that the activity of MondoA is dynamically regulated by sensing glucose or fructose availability in human skeletal myocytes.
Delineation of MondoA gene targets and pathways in human myotubes. To delineate MondoA target genes and pathways in skeletal myocytes, global RNA-sequencing (RNA-seq) was conducted in human myotubes in which MondoA was depleted by siRNA (MondoA KD) compared to control myotubes transfected with an unrelated siRNA (Control). The RNA-seq analysis identified 1,359 upregulated genes and 1,906 downregulated genes in the context of MondoA KD (RPKM>1 and adjusted p value < 0.01) (Figure 2A). As expected, \(TXNIP\) and \(ARRDC4\) expression was profoundly downregulated by MondoA KD (Figure 2A and Supplemental Table 1). KEGG pathway analysis of the downregulated genes revealed strong links to pathways involved in insulin signaling, fatty acid metabolism, and adipocytokine signaling (Figure 2B and Supplemental Table 2A). Upregulated pathways did not identify metabolic processes, but included Focal Adhesion and Rap1 signaling pathways (Supplemental Table 2B). MondoA-regulated lipid metabolic genes were involved in fatty acid thioesterification (\(ACSL1\), \(ACSL3\) and \(ACSL4\)), fatty acid elongation (\(ELOVL5\)) and triglyceride (TAG) synthesis (\(SCD\), \(SCD5\), \(FADS1\) and \(FADS2\)) among other pathways. In addition, MondoA KD decreased the expression of \(SREBF1\) (\(SREBP1\)) (Figure 2C).

Genes involved in insulin signaling and cellular glucose metabolism pathways were also regulated by MondoA. First, \(TXNIP\) and \(ARRDC4\), known suppressors of insulin signaling, were markedly downregulated by MondoA depletion (Figure 2A and Supplemental Table 1). In addition, levels of the \(PRKCQ\) (PKC\(\theta\)) transcript, which encodes a negative modulator of insulin signaling (20), was downregulated by MondoA KD (Figure 2C). Genes involved in glucose metabolism were also identified as putative MondoA targets including \(PPPIR3A\), which encodes protein phosphatase 1 regulatory subunit 3A, also known as PP1G (21) (Figure 2C) and PP1G, a phosphatase that has been implicated in the regulation of glycogen synthesis via
dephosphorylation of glycogen synthase and glycogen phosphorylase kinase (22). Expression of genes involved in the hexosamine biosynthesis pathway (HBP) were also downregulated by MondoA KD including \textit{GFPT1} and \textit{GFPT2}. TRIB3 was also identified as a putative MondoA target. TRIB3 encodes tribbles homolog 3, a glucose induced factor that has been implicated in glucose-induced insulin resistance (23) and has been shown to require flux through the HBP (Figure 2D). The regulation of a subset of upregulated and downregulated genes was confirmed by quantitative reverse-transcription PCR (qRT-PCR) (Supplemental Figure 2).

To extend our analysis of myocyte MondoA target genes and to identify direct MondoA genomic targets in human myotubes, we performed genome-wide MondoA chromatin immunoprecipitation with deep sequencing (ChIP-seq) experiments in wild-type and MondoA KD human skeletal myotubes and compared the results with that of the RNA-seq analysis. A total of 19,213 MondoA binding peaks were identified by HOMER software (see Methods). 25.9% of the total peaks were located within 5kbp of a known transcription start site or within the first intron (Promoter-TSS). Many binding peaks were also distributed in intron (22.9 %) and intergenic (40.1%) regions, respectively (Figure 3A). \textit{De novo} motif analysis with HOMER was conducted using 4,984 peaks of Promoter-TSS (see Methods). Whereas the enriched motifs analysis did not include a classic ChoRE (MondoB) motif (Figure 3B), highly enriched sequences in the MondoA binding sites included other basic Leucine Zipper (bZIP) and basic helix-loop-helix (bHLH) motifs (TEAD4, RUNX1, AP-4, and E-box sites) which have been identified as recognition motifs for MondoA (15).

To identify MondoA direct target genes, we intersected the ChIP-seq data set with genes within the regulated pathways defined by the RNA-seq-based KEGG analysis. Using this approach, we found MondoA binding peaks in the promoter region (within 5 kb of the TSS or in
first intron) of many genes within the pathways identified by the RNA-seq analysis including insulin signaling (TXNIP and ARRDC4; Figure 3C); glucose metabolism (KLF10, KLF11, GFPT1, GFPT2; Figure 3D); glycogen synthesis (PPP1R3A and PPP1R3B; Figure 3E); and fatty acid thioesterification, desaturation, lipogenesis, and TAG synthesis (ACSL1, ACSL4, FADS1 and FADS2, ELOVL5, ELOVL6, SCD and SCD5, DGAT1 and DGAT2; Figure 3F).

ChiP-seq for the active enhancer mark, H3K27ac, demonstrated that the majority of MondoA peaks overlapped with H3K27Ac peaks further supporting a role for MondoA as an active transcriptional regulator at these sites (Figure 3C-F). These results indicate that MondoA serves to regulate the genes shown in the cellular metabolic pathways depicted in Figure 2D largely as a direct transcriptional regulator. Collectively, these analyses suggest that MondoA serves to activate genes involved in nutrient (fatty acid and glucose) storage and diversion from catabolic pathways including via suppression of insulin signaling.

Muscle-specific MondoA deficiency affords protection against glucose intolerance and muscle insulin resistance caused by chronic nutrient overload. We sought to explore the role of MondoA in the control of muscle metabolism in vivo. To this end, Mlxip (MondoA) floxed mice were crossed with myogenin-Cre mice to generate skeletal muscle-specific MondoA-deficient (myogenin Cre⁺ Mlxip^{0/0}; msMondoA^{−/−}) mice (Supplemental Figure 3A). Cre[−] Mlxip floxed mice (myogenin Cre[−] Mlxip^{0/0}) were used as wild-type (WT) controls. We confirmed that Mlxip expression was markedly diminished in gastrocnemius skeletal muscle of msMondoA^{−/−} mice compared with that of WT mice but not in liver and heart (Supplemental Figure 3B,C).

msMondoA^{−/−} mice were born at the expected Mendelian ratios and did not exhibit any obvious phenotype including mortality or alterations in body weight during postnatal growth. The lack of
overt phenotype is consistent with the baseline phenotype of msMondoA−/− mice reported by others (24).

We hypothesized that the nutrient diversion function of MondoA on insulin signaling would be persistently activated in muscle in the context of chronic nutrient excess. Accordingly, deletion of MondoA in muscle would be predicted to ameliorate insulin resistance caused by diet-induced obesity (DIO). To explore this possibility, male and female MondoA WT and msMondoA−/− mice were placed on a standard chow diet (CD) or 60% high fat diet (HFD) for 16 weeks. HFD resulted in significant weight gain in both WT and msMondoA−/− mice. Body weights were no different between the WT and msMondoA−/− groups regardless of diet (Figure 4A).

As a first step, we examined the expression of a subset of MondoA target genes in the gastrocnemius muscle of msMondoA−/− mice compared with that of WT mice under standard chow and following HFD. Consistent with the results of the RNA-seq and ChiP-seq analyses in human myotubes, MondoA deficiency reduced expression of genes involved in insulin signaling including Txnip and Arrdc4, glucose metabolism (Klf10, Klf11, Gfpt1 and Gfpt2) and glycogen synthesis (Ppp1r3a) in skeletal muscle (Supplemental Figure 4). Whereas all of the target genes were downregulated by loss of MondoA under the HFD condition, many were also significantly reduced in the context of standard chow feeding (Supplemental Figure 4).

Glucose tolerance tests (GTT) and insulin tolerance tests (ITT) performed on male WT msMondoA−/− mice demonstrated no difference in glucose excursion or area-under-the-curve (AUC) between the groups on CD. In contrast, following 16 weeks of HFD, the msMondoA−/− mice were more glucose tolerant and insulin sensitive compared to WT (Figures 4B,C). Moreover, fasting plasma insulin levels were markedly lower in the HFD-fed MondoA−/− mice
compared to controls (Figure 4D) despite similar fasting blood glucose levels (Figure 4E). Similar results were obtained with female msMondoA^{−/−} mice (Supplemental Figure 5A-E). These results suggested that msMondoA^{−/−} muscle was more insulin responsive under conditions of diet-induced obesity compared to controls. Levels of phosphorylated Akt (pAKT) were measured in gastrocnemius muscle at baseline (5h fasting) and following an acute administration of insulin. When fed CD, pAKT levels were no different between the groups at baseline or following acute insulin administration (Figure 5A). As expected, the level of insulin-induced pAkt levels was blunted in muscle of the control HFD mice, consistent with insulin resistance (Figure 5A). However, insulin-induced pAKT levels were significantly higher in the msMondoA^{−/−} muscle in the HFD condition (Figure 5A). In addition, we measured pAKT levels in liver at baseline and following insulin administration. Baseline or insulin-induced pAKT levels in liver were no different between the groups in the HFD condition (Supplemental Figure 6).

We next measured muscle glucose uptake using an ex vivo preparation. For these experiments, the soleus muscle was isolated and was used to assess glucose uptake by measuring labeled 2-deoxyglucose (2DG) in the absence and presence of insulin. In the CD condition, 2DG uptake was higher in the msMondoA^{−/−} muscle at baseline but there was no difference following insulin administration (Figure 5B). Consistent with the pAKT results, the blunted insulin-stimulated glucose uptake under HFD conditions was partially rescued in msMondoA^{−/−} muscle (Figure 5B). These results demonstrate that MondoA deficiency ameliorates insulin signaling in the context of insulin resistance caused by chronic caloric excess. Given that glucose uptake was increased in msMondoA^{−/−} muscle in the absence of insulin under chow diet conditions, we also
assessed the expression of Glut4. However, Glut4 mRNA and protein levels were not changed between groups (Supplemental Figure 7A,B).

Muscle MondoA deficiency reduces muscle TAG and DAG accumulation caused by chronic nutrient overload. Obesity-related insulin resistance is tightly associated with the accumulation of intracellular neutral lipid in muscle. As predicted by the RNA-seq/ChIP-seq studies, the expression of many genes involved in lipid biosynthesis pathways were downregulated in muscle of msMondoA^{−/−} mice including targets involved in thioesterification and desaturation (Acsl3, Acsl4, Fads1, Scd1) and lipogenesis/TAG synthesis (Fasn, Elovl5, Elovl6, Dgat1 and Dgat2) (Figure 6A). These results indicate that MondoA regulates genes involved in the generation of TAG from fatty acids, a finding consistent with our previous observation that a small molecule that inhibits MondoA also reduces myocyte lipid accumulation (14). Somewhat surprisingly, many of the lipid metabolic target genes were not induced at the end of the 16 week HFD administration in control animals with the notable exception of Scd1, which was dramatically induced. Notably, MondoA deficiency resulted in a marked reduction in Scd1 expression in the HFD condition (Figure 6A).

We next assessed the muscle lipid phenotype in the MondoA^{−/−} mice on HFD. HFD-induced TAG accumulation was significantly reduced in skeletal muscle of msMondoA^{−/−} mice compared to WT mice, but not in liver (Supplemental Figure 8A,B). Interestingly, this difference was not observed with CD (Supplemental Figure 8A,B). To further probe the changes in muscle lipid caused by MondoA deficiency, the muscle lipidome was assessed using quantitative mass spectrometry (25, 26). This analysis demonstrated that levels of total TAG and DAG were diminished in msMondoA^{−/−} muscle, but only in the context of HFD (Figure 6B,C and
Supplemental Table 3). Quantification of the TAG and DAG acyl species in the HFD groups revealed a significant reduction in a subset of TAG species in a pattern that was consistent with downregulation of the muscle lipid biosynthetic MondoA target genes. Specifically, TAG species containing acyl groups C16:1, C18:0, and C18:1 were downregulated in MondoA-deficient muscle (Figure 6D and Supplemental Table 3). This profile is consistent with reduced expression of Scd1 and Elovl6, both of which are active in the biosynthesis of C16 and C:18 monounsaturated species as shown in Figure 6D. The lack of impact on shorter and longer species is also consistent with this conclusion. These results are consistent with a role for MondoA in the diversion of fatty acids into muscle TAG stores in the context of caloric excess in vivo in muscle.
DISCUSSION

Our results provide evidence that the elusive connection between insulin resistance and myocellular lipid accumulation involves the nutrient-sensing transcription factor MondoA. Previous studies have implicated a number of lipid species as a driver of insulin resistance in the context of cellular lipid overload (6-11). In this report, we provide evidence for a common upstream regulator that controls both processes. Our results indicate that MondoA serves as a glucose- or fructose-regulated transcription factor that under normal physiological conditions likely serves as a rapidly-acting checkpoint to prevent excess energy substrate flux into catabolic pathways when myocyte nutrient balance is positive. Specifically, MondoA gene targets inhibit insulin signaling, incorporate fatty acids into TAG storage, and divert intracellular glucose to glycogen or the hexosamine biosynthesis pathway. Our in vivo findings support the conclusion that in conditions of chronic caloric excess, MondoA signaling remains active leading to myocyte lipid storage and insulin resistance.

MondoA is capable of rapidly responding to fuel availability by functioning as a glucose-sensing transcription factor as first described in cancer cells and rat skeletal myoblasts (17, 18). The regulation of MondoA activity occurs in a highly dynamic and rapid manner via nuclear-cytosolic shuttling (14, 16). Interestingly, recent evidence suggests that MondoA is activated by glucose-6-phosphate levels to maintain cellular energy homeostasis. Specifically, MondoA was shown to be activated by cellular acidosis, which in turn drives mitochondrial ATP production stimulating the formation of glucose-6-phosphate via mitochondrial-bound hexokinase (27). We show here that MondoA is activated in human skeletal myotubes by glucose and fructose but not other nutrients such as fatty acids and amino acids. This metabolic regulation mechanism is similar to that of the highly related ChREBP, a liver enriched transcription factor that is also
regulated by glucose and fructose metabolites and serves to regulate glucose metabolism and lipogenesis (28). Our RNA-seq/ChIP-seq studies delineated gene targets of MondoA involved in nutrient storage and diversion from ATP-generating catabolic processes including TAG synthesis, glycogen synthesis, HBP and insulin-stimulated glucose uptake. These pathways exhibit partial overlap with ChREBP target actions based on ChIP-seq studies conducted in HepG2 cells (29) and in liver and white adipose tissue (30). Specifically, ChREBP targets include TXNIP and ARRDC4, and some genes involved in lipogenesis. However, de novo lipogenesis targets are more prevalent in the ChREBP dataset whereas TAG synthesis genes were more common for MondoA in muscle. Notably, ChREBP signaling has been linked to the excessive lipogenic response to fructose overload in liver, possibly playing a role in non-alcoholic fatty liver disease (NAFLD) (31, 32). Our results demonstrate an important role for glucose/fructose-activation of MondoA in muscle lipid accumulation and insulin resistance.

An important function of MondoA unveiled here is its inhibition of muscle glucose uptake via suppression of insulin action in the context of chronic nutrient excess. The results of the muscle insulin signaling and ex vivo 2DG uptake studies suggest that MondoA may affect with insulin signaling and myocyte glucose uptake at several levels. MondoA deficiency resulted in an increase in 2DG uptake under standard chow conditions without an apparent interaction with insulin signaling, at least as assayed via AKT phosphorylation status. The basis for this regulation is unknown but is not related to MondoA-mediated regulation of Glut4 expression (Supplemental Figure 7). However, in the context of diet-induced obesity and insulin resistance, MondoA deficiency increased insulin-stimulated 2DG uptake and enhanced phosphorylation of AKT. These findings and published results suggest that several mechanisms may be operative in MondoA-mediated suppression of insulin signaling and myocyte glucose uptake. First, MondoA
activates TXNIP and ARRDC4 which are well known to inhibit cellular glucose uptake (16). However, the mechanisms involved in this latter effect are not well delineated and effects on both GLUT vesicle transport and insulin signaling have been suggested (33, 34). Secondly, we found that protein phosphatase 1 regulatory subunit 3A, which regulates a glycogen-associated form of protein phosphatase-1 (PP1G) downstream of insulin signaling is a MondoA target. PP1G has been implicated in insulin resistance and type 2 diabetes based on human genetic studies (35, 36). Lastly, we have found that KLF10 and KLF11 are MondoA targets. Hepatic glucose metabolism is regulated by KLF10 which has been reported to be a direct target of ChREBP in rat primary hepatocytes (37, 38). KLF11 is involved in the regulation of insulin gene expression in pancreatic beta cells. In addition, KLF11 deficiency improves HFD-induced obesity by enhancing energy expenditure and insulin sensitivity (39, 40). It will be of significant interest to delineate the specific mechanisms involved in the control of myocyte insulin action in muscle.

MondoA also regulates genes involved in TAG biosynthesis and remodeling. Myocyte MondoA lipid metabolic target genes include the entire pathway from fatty acid thioesterification (Acsl3, Acsl4), elongation (Elov15, Elov16), desaturation (Scd1, Fads1), to TAG synthesis (Dgat1, Dgat2). In addition, we identified some genes involved in de novo lipogenesis in our analyses such as Fasn, although the relevance of the de novo lipogenesis pathway in muscle is unclear. Interestingly, the gene expression and lipidomic analyses indicate that the impact of MondoA is largely in the context of chronic caloric excess. This was particularly apparent for Scd1 where its dramatic induction in muscle by high fat diet was markedly crippled with MondoA deficiency (Figure 6A). The regulation of MondoA target genes involved in lipid biosynthesis has also been observed in neuroblastoma cells (41). The lipidome data was
consistent with the muscle MondoA TAG lipid metabolic targets defined here including Scd1. Specifically, consistent with the observed downregulation of Scd1 and Elovl6 expression in MondoA-deficient muscle, TAG 16:0, 18:0 and oleic 18:1 acyl species, products of the reactions catalyzed by these enzymes were significantly reduced in the MondoA deficient muscle. This is further supported by the observation that 14:0 and 16:0 acyl species were not downregulated in muscle of msMondoA−/−. This TAG profile is remarkably similar to the liver TAG lipidome of Elovl6-null mice (42). However, despite a downregulation of Elovl5 expression in msMondoA−/− muscle, the levels of long-chain polyunsaturated fatty acids were not reduced. These latter results suggested an alternate biosynthetic pathway or that fatty acid elongase 5 is not rate-limiting for this pathway in muscle. The relationship of these lipidome changes to the observed insulin sensitive phenotype in MondoA-deficient muscle is not clear. Both TAG and DAG species were reduced in muscle of the msMondoA−/− mice and previous studies have shown a potential link between DAG levels and insulin resistance (43). In addition, Scd1 deficiency has been linked to improved insulin sensitivity in mice although the mechanisms are unknown (44, 45). However, as described above, a direct effect of MondoA on insulin signaling seems like a more plausible explanation.

Our in vivo results define a role for MondoA as a nutrient-regulated transcription factor that served as a metabolic gatekeeper in muscle during “times of plenty”. Indeed, the effects of MondoA deficiency on muscle lipid accumulation and insulin signaling were only manifest under conditions of chronic nutrient overload. The actions of MondoA involve both nutrient storage and suppression of glucose uptake. Accordingly, MondoA does not fully mimic the actions of insulin. We speculate that MondoA serves to rapidly and dynamically divert fuels to storage while preventing additional nutrient (glucose) import. This function could serve an
adaptive role when switching between periods of increased muscle activity to sedentary states. Consistent with this notion, independent work by others demonstrated that mice lacking MondoA exhibit an exercise-induced phenotype (24). Specifically, MondoA knockout mice exhibited enhanced sprint capacity possibly due to increased muscle glucose uptake and glycolytic capacity (24). Taken together with our results, we speculate that nutrient-regulated MondoA signaling represents a conserved “thrifty gene response” to match muscle fuel stores with demand. However, under conditions of chronic caloric excess, this mechanism becomes chronically activated, leading to a vicious cycle of muscle lipid accumulation and insulin resistance. Accordingly, this pathway or downstream effectors should be considered candidate targets for therapeutic strategy to reduced obesity-related insulin resistance.
METHODS

Cell culture. Primary human skeletal myoblast cell line (SK-1111) was purchased from Cook MyoSite. Myoblasts were grown to approximately 80-90% confluence and differentiated into myotubes as previously described (46).

Animal studies. All animal experiments were performed in accordance with NIH guidelines for the humane treatment of animals and approved by the Institutional Animal Care and Use Committee (IACUC) of the Perelman School of Medicine at the University of Pennsylvania. For generation of mice with skeletal muscle-specific deletions of the Mlxip (MondoA) alleles, MondoA floxed mice maintained on a C57BL/6 background were bred to myogenin-Cre (47) mice maintained on a C57BL/6 background, kindly obtained from Dr. Eric N. Olson (University of Texas Southwestern Medical Center). Male or female littermate Cre-positive (msMondoA⁻/⁻) and Cre-negative (littermate controls) mice were then group housed. Mice were maintained on standard chow (Lab Diet 5010) or a 60% high fat diet (Research Diets, D12492, USA) for 16 weeks.

RNA isolation and quantitative RT-PCR. Total RNA was isolated using RNeasy Mini Kit (Qiagen) and RNase-Free DNase Set (Qiagen) according to the manufacturer’s instructions. Complementary DNAs (cDNAs) were synthesized using the Affinity Script cDNA Synthesis Kit (Agilent) with 0.5μg of total RNA. PCR reactions were performed using Brilliant III Ultra-Fast SYBR Green QPCR Master Mix (Agilent) on a QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems) with specific primers for each gene. Primer sets are listed in Supplemental
Table 4. The expression of target mRNAs were normalized by that of \textit{Rplp0} (36B4). All experiments were repeated 3 times in either triplicate or quadruplicate.

\textbf{RNA-sequencing (RNA-seq) library preparation.} DNase-treated total RNA (1μg) was used to construct multiplexed libraries using Illumina's Truseq Stranded Total RNA Kit. First, the total RNA was subjected to Ribo-Zero Removal Kit (Illumina) to remove rRNA. The remaining RNA was purified, fragmented, reverse transcribed, adapter ligated and finally PCR amplified to enrich the DNA fragments. RNA-seq libraries were sequenced at paired-end 50 bp read length on an Illumina HiSeq 2500 instrument. Illumina’s BaseSpace was used to convert bcl files to FASTQ files and de-multiplex the samples.

\textbf{RNA-seq data analysis.} RNA-seq reads were aligned to the GRCh38 reference genome by using STAR (48) with the following parameter “--outSAMstrandField intronMotif” to indicate RNA-seq read alignment. For differential gene expression analysis, we used edgeR (49) to perform exact test. Genes were excluded in differential analysis if their expression levels measured in RPKM were <1 in all of the samples. Differentially expressed genes were identified by adjusted p-value of <0.01 with the Benjamini and Hochberg multiple testing correction. Hierarchical clustering was performed based on gene-wise correlation-derived dissimilarity to identify gene lists of different functional modules. Pathway enrichment analysis was performed using Enrichr (50), where the top-ranking KEGG pathway and Gene Ontology terms in Biological Processes, Molecular Functions and Cellular Components were selected based on the Enrichr combined score. Expression of representative downregulated genes identified by pathway enrichment analysis is presented in heatmaps.
Chromatin IP (ChIP) and ChIP-sequencing (ChIP-seq) library preparation. ChIP was performed as previously described (51). Briefly, differentiated human skeletal myotubes were cross-linked with 1% formaldehyde for 10 minutes at room temperature, and glycine was added to stop the cross-linking reaction. Cells were harvested and lysed. For chromatin fragmentation, sonication was performed using a Bioruptor (Diagenode). Proteins were immunoprecipitated by using anti-MondoA (ProteinTech, catalog number 13614-1-AP) or IgG control (Sigma; catalog number I5006) overnight at 4°C. DNA fragments were purified using a QIAquick PCR purification kit (Qiagen). For ChIP-seq library preparation, five biological replicate ChIPs were pooled for each condition. Total 1 μg ChIP DNA was used to generate barcoded ChIP-seq libraries using Ovation Ultralow Library Systems (NuGen). Before PCR library amplification, size selection of adaptor-ligated DNA was performed using Agencourt AMPure XP Beads (Beckman Coulter). PCR Purification and MinElute (Qiagen) kits were used for library purification steps. ChIP-seq libraries were sequenced at single-end 50 bp read length on an Illumina HiSeq 4000 System.

The RNA-seq and ChiP-seq datasets discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus as a SuperSeries and are accessible through GEO Series accession number GSE126767. The following link has been created to allow review of record GSE126767 prior to publication:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126767 Please use the following secure token to access the site: yzepweckftgzmz

ChIP-seq data analysis. ChIP-seq reads were aligned to the GRCh38 reference genome by using STAR with the following setting “--alignIntronMax 1 --outFilterMultimapNmax 1”. Only
unique mapped reads were considered for further analysis. Aligned reads of biological replicates in the same biological condition were pooled together to generate tag directories by using Homer (52). Peak calling was performed by using the findPeaks command in Homer using the default settings (i.e., fold change over input tag count ≥ 4.0 and Poisson p-value < 0.0001 relative to input tag count). All bigwig files were generated by using Homer and the bedGraphToBigWig command and were visualized on Integrative Genomics Viewer (IGV). Pathway enrichment analysis was performed by using Enrichr based on the nearby genes within 10kb. De novo motif analysis based on the ChIP-seq peaks was performed using the findMotifsGenome command in Homer within a 200bp window with default options. The identified motifs were ranked by p-value calculated based on a binomial test against GC%-matched background and only the top motifs were presented. Normalized ChIP-seq signals were obtained by annotating the peaks using the annotatePeaks command in Homer.

Glucose tolerance test (GTT), insulin tolerance test (ITT) and insulin signaling. GTT or ITT were conducted after a 5 hour fast. A bolus of glucose (1 g/kg, GTT) or insulin (0.75 units/kg, ITT) was administered via i.p. injection. A blood sample was obtained from the tail tip for the measurement of baseline glucose using a hand-held glucometer (Accu-Chek Aviva Plus, Roche). For measurement of blood glucose, blood was obtained at 0, 15, 30, 60 and 120 minutes following the glucose bolus. For detection of insulin signaling, mice were fasted for 5 hours on the last day of the study. Plasma insulin was measured using Mouse Insulin ELISA kit (Mercodia). Gastrocnemius skeletal muscle tissues were harvested 10 minutes after an acute insulin administration (1.0 U/kg, i.p.) and immediately snap frozen. The tissue samples were homogenized in RIPA buffer containing 1% NP-40, 5mM Na$_4$P$_2$O$_7$, 1mM EDTA, 20mM NaF,
2mM Na$_3$VO$_4$, 1X cOmplete protease inhibitor (Roche) and 1mM phenylmethylsulfonyl fluoride. Western blot analysis for levels of phospho-Akt (S473) and total Akt was then performed.

Muscle and liver triglyceride determination. Tissue triglyceride (TAG) levels were determined as previously described (53). 50mg frozen tissue was homogenized with 1mL chloroform:methanol (2:1) and kept on ice with vortexing. After adding distilled water (300µl), the mixture was centrifuged at 1000xg for 20min. The lower (chloroform) phase was collected and evaporated under nitrogen stream. The dried samples were suspended in 0.5mL chloroform and TAG levels were quantified by colorimetric assay using Infinity Triglycerides Reagents (Thermo Scientific), following the manufacturer's instructions for colorimetric assay.

Immunoblotting analysis. Tissues or cells were lysed in the RIPA buffer containing 1% NP-40, 5mM Na$_4$P$_2$O$_7$, 1mM EDTA, 20mM NaF, 2mM Na$_3$VO$_4$, 1x cOmplete™ protease inhibitor (Roche) and 1mM phenylmethylsulfonyl fluoride. Protein concentration was determined using Micro BCA Protein Assay Kit (Thermo Scientific). Whole cell lysates were subjected to SDS–PAGE and transferred to a nitrocellulose membrane. The blots were hybridized with specific antibodies. The following antibodies were used: phospho-Akt (Ser473) and Akt (Cell Signaling Technology; catalog numbers 4058 and 9272 respectively); β-actin (Sigma-Aldrich; catalog number A5316); TXNIP (MBL; catalog number K0205-3); MondoA (Bethyl Laboratories; catalog number A303-195A or ProteinTech; catalog number 13614-1-AP). Protein quantification was performed using Image Studio Lite (LI-COR) and normalized to β-actin or total protein where indicated.
Ex Vivo Muscle Glucose Uptake. Glucose uptake was measured in soleus strips as previously described (54). Briefly, WT and msMondoA−/− mice were fasted for 5 hour following which soleus muscles were incubated with resting tension in the KHB buffer containing 0.1% bovine serum albumin (BSA), 32 mM mannitol, and 8 mM glucose with continuous gas supply (95% O₂/5% CO₂). Following pre-incubation, muscles were incubated under basal (no additions) or insulin-stimulated (15 mU/ml) conditions for 15 minutes with the addition of [³H]-2-deoxyglucose (2-DG) for the last 20 min. Following the wash step in the incubation media, muscles were frozen in liquid nitrogen and used for measurement of 2-DG transport.

Lipidomics analysis. Freeze dried muscle samples were homogenized into powder first in 2.0 ml cryogenic vials (Corning Life Sciences, Tewksbury, MA) by using the Precellys® Evolution. 1.0 mL PBS was added in the vials for further homogenization of muscle samples. Protein assay on the homogenates was performed by using a bicinchoninic acid protein assay kit (Thermo Scientific, Rockford, IL) with bovine serum albumin as standards. The remaining homogenate was accurately transferred into a disposable glass culture test tube, and a mixture of lipid internal standards was added prior to lipid extraction for quantification of all reported lipid species. Lipid extraction was performed by using a modified Bligh and Dyer procedure as described previously (26). Individual lipid extracts were resuspended into a volume of 100 μL of chloroform/methanol (1:1, v/v) per mg of protein and flushed with nitrogen, capped, and stored at −20 °C for lipid analysis. For shotgun lipidomics, lipid extracts were further diluted to a final concentration of ~500 fmol/µL, and the mass spectrometric analysis was performed on a QqQ mass spectrometer (Thermo TSQ Quantiva, San Jose, CA) equipped with an automated nanospray device (TriVersa NanoMate, Advion Bioscience Ltd., Ithaca, NY) as previously described (55). Identification and
quantification of lipid molecular species were performed using an automated software program (56, 57). Data were normalized to mg of protein.

Statistics. Mann Whitney test, one-way ANOVA with Tukey post hoc test, or two-way ANOVA with Tukey post hoc test was performed to determine statistical significance as indicated (GraphPad Prism 7).
AUTHOR CONTRIBUTIONS

B.A. and D.P.K. designed the study; B.A., N.J., X.H. performed experiments; B.A., N.J., R.B.V., P.M.T., X.H., D.P.K. analyzed data; D.E.A contributed the MondoA flox mice and discussed the data; S.W. and K.J.W. performed the bioinformatics analyses; B.A. and D.P.K. wrote the manuscript; D.E.A., X.H. and R.B.V. edited and reviewed manuscript; D.P.K. acquired funding.

ACKNOWLEDGMENTS

We thank Teresa Leone for scientific discussion and help with manuscript preparation; Joseph Baur and the Mouse Phenotyping, Physiology, and Metabolism Core at the University of Pennsylvania Perelman School of Medicine for assistance with the glucose tolerance tests; Ling Lai and Peihong Ma for assistance with the animal studies; Chunyan Wang and Charles Chao Qin for performing the lipidomics studies. This work was supported by NIH grant R01 DK045416 (D.P.K.) and R01 DK106027 (K.-J.W.).
REFERENCES

Ahn Figure 1

Figure A

- Relative mRNA levels of TXNIP and β-actin under glucose starvation for 0 to 24 hours.
- Significant changes indicated by asterisks.

Figure B

- Relative mRNA levels under starvation for 6 hours and refeeding at 0.5, 1, 2, and 4 hours.
- Significant changes indicated by asterisks.

Figure C

- Bar charts showing relative mRNA levels of TXNIP and β-actin under basal, starvation, and refeeding conditions.
- Control (Con) and KD conditions indicated.

Figure D

- Bar charts showing input (%) for TXNIP-ChoRE and ARRDC4-ChoRE under basal, starvation, and refeeding conditions.
- Significant changes indicated by asterisks.

Figure E

- Relative mRNA levels of TXNIP and β-actin under starvation for 6 hours with various treatments.
- Significant changes indicated by asterisks.

Figure F

- Relative mRNA levels of TXNIP and β-actin under starvation for 6 hours with various treatments.
- Significant changes indicated by asterisks.
Figure 1. Nutrient (glucose) levels regulate MondoA activity in human skeletal myotubes.

(A) (top) Gene expression of *TXNIP* was measured by quantitative RT-PCR in human skeletal myotubes following deprivation of glucose at the indicated time (n=4). (bottom) Western blot analysis demonstrating the effect of glucose deprivation. * p<0.05 vs 0h.

(B) (top) Gene expression of *TXNIP* was measured by quantitative RT-PCR in human myotubes following a 6h glucose removal and glucose refeeding at the indicated time (n=4). (bottom) Western blot analysis confirmed the effect of glucose refeeding. * p<0.05 vs Starvation 6h.

(C) (top) Gene expression of *TXNIP* was measured by quantitative RT-PCR in human myotubes following deprivation and refeeding of glucose in the absence or presence of siRNA-mediated MondoA knockdown (n=4). (bottom) Western blot analysis confirmed the effect of glucose in the absence or presence of MondoA knockdown. * p<0.05 vs siControl. # p<0.05. † p<0.05.

(D) MondoA occupation on the ChoRE promoters of the *TXNIP* and *ARRDC4* genes was measured by MondoA ChiP-qPCR (n=4). *p<0.05 vs Con. † p<0.05 vs Starvation.

(E) (top) Gene expression of *TXNIP* were measured by quantitative RT-PCR in human myotubes following a 6h glucose removal and refeeding of 100mM palmitate (Pal), 100mM stearate (Ste), 100mM oleate (Ole) and 100mM linoleate (Lin) for 24h (n=4). (bottom) Western blot analysis of MondoA confirmed the effect of glucose refeeding. * p<0.05 vs veh/no starvation. † p<0.05 vs Veh/Starvation.

(F) (top) Gene expression of *TXNIP* was measured by quantitative RT-PCR in human skeletal myotubes following a 6h glucose removal and refeeding of 10mM beta-hydroxybutyrate (BHB), 4mM branch chain amino acid (BCAA), 25mM glucose (Glu) and 25mM fructose (Fru) for 24h (n=4). (bottom) Western blot analysis of TXNIP demonstrating the effect of beta-hydroxybutyrate (BHB), branch chain amino acid (BCAA), glucose and fructose. * p<0.05 vs Veh/No Starvation.

The data represents mean ± SD. All statistical significance determined by one-way ANOVA with Tukey multiple comparison post hoc test.
Figure 2

A

Ahn_Figure 2

B

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin resistance</td>
<td>(20)</td>
</tr>
<tr>
<td>Adipocytokine signaling</td>
<td>(15)</td>
</tr>
<tr>
<td>Fatty acid metabolism</td>
<td>(12)</td>
</tr>
<tr>
<td>Hypertrophic cardiomyopathy</td>
<td>(19)</td>
</tr>
</tbody>
</table>

C

Insulin resistance

<table>
<thead>
<tr>
<th>Control</th>
<th>MondoA KD</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>#1</td>
</tr>
<tr>
<td>#2</td>
<td>#2</td>
</tr>
<tr>
<td>#3</td>
<td>#3</td>
</tr>
</tbody>
</table>

Fatty acid metabolism

<table>
<thead>
<tr>
<th>Control</th>
<th>MondoA KD</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>#1</td>
</tr>
<tr>
<td>#2</td>
<td>#2</td>
</tr>
<tr>
<td>#3</td>
<td>#3</td>
</tr>
</tbody>
</table>

Adipocytokine signaling

<table>
<thead>
<tr>
<th>Control</th>
<th>MondoA KD</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>#1</td>
</tr>
<tr>
<td>#2</td>
<td>#2</td>
</tr>
<tr>
<td>#3</td>
<td>#3</td>
</tr>
</tbody>
</table>

D

Fatty Acid (FA)

- ACSL1
- ACSL4

Insulin Receptor

- TXNIP
- ARRDc4

Insulin Signaling

Glucose Import

- Glucose

Glycolysis

- Fructose-6-P
- Glycogen

Acetyl-CoA

- Acyl-CoA

TCA Cycle

- Acetyl-CoA

UDP-GlcNAc

- UDP
- Acetyl-CoA

UDP-GlcNAc

- UDP
- Acetyl-CoA

Glycogen

- Glycogen
Figure 2. MondoA regulates genes involved in fatty acid metabolism, hexosamine biosynthetic pathway (HBP), glycogen synthesis, and insulin signaling in human skeletal myotubes. Global RNA-seq was performed in human myotubes transiently transfected by siControl (Control) or siMondoA (MondoA KD, 50nM) for 3 days (n=3). (A) Scatter plot represents up (red) or down (blue) regulated genes compared Control to MondoA KD. (B) Top-ranked KEGG pathways were selected by Enrichr score [-log10(adjusted P)] using downregulated genes by MondoA knockdown. (C) Heat map shows downregulated genes identified by KEGG pathway analysis. (D) Schematic diagram depicts MondoA target genes in fatty acid metabolism, hexosamine biosynthetic pathway (HBP), glycogen synthesis, and insulin signaling. All Gene IDs are described in Supplemental Table 2.
Ahn_Figure 3

A

![Pie chart showing percentages of different genomic regions]

- Intergenic
- Intron
- Promoter-TSS
- Exon
- TTS
- 3' UTR
- 5' UTR

B

<table>
<thead>
<tr>
<th>PWM</th>
<th>P-value</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCAATTC</td>
<td>1e-282</td>
<td>AP-1 (bZIP)</td>
</tr>
<tr>
<td>AGAGT</td>
<td>1e-193</td>
<td>TEAD4</td>
</tr>
<tr>
<td>GTAGTTT</td>
<td>1e-82</td>
<td>RUNX1</td>
</tr>
<tr>
<td>CACGTG</td>
<td>1e-56</td>
<td>AP-4 (bHLH)</td>
</tr>
<tr>
<td>GTACCTG</td>
<td>1e-52</td>
<td>E-box (bHLH)</td>
</tr>
</tbody>
</table>

C

- **TXNIP**
 - MondoA: Con [0.110], KD [0.200]
 - H3K27ac: Con [0.110]

- **ARRDC4**
 - MondoA: Con [0.100], KD [0.150]
 - H3K27ac: Con [0.100]

D

- **KLF10**
 - MondoA: Con [0.555], KD [0.200]
 - H3K27ac: Con [0.555]

- **KLF11**
 - MondoA: Con [0.600], KD [0.9]
 - H3K27ac: Con [0.600]

- **GFPT1**
 - MondoA: Con [0.180], KD [0.250]
 - H3K27ac: Con [0.180]

E

- **PPP1R3A**
 - MondoA: Con [0.3], KD [0.25]
 - H3K27ac: Con [0.3]

- **PPP1R3B**
 - MondoA: Con [0.8], KD [0.17]
 - H3K27ac: Con [0.8]

F

- **ACSL1**
 - MondoA: Con [0.9], KD [0.12]
 - H3K27ac: Con [0.9]

- **ACSL4**
 - MondoA: Con [0.7], KD [0.12]
 - H3K27ac: Con [0.7]

- **GFPT2**
 - MondoA: Con [0.18], KD [0.25]
 - H3K27ac: Con [0.18]
Figure 3. Delineation of the MondoA cistrome in human skeletal myotubes. (A) Pie chart of MondoA binding peak distribution in the whole genome MondoA ChIP-seq dataset. Promoter region was defined as -5kb from transcription start site (TSS) or within the first intron. (B) Top 5 MondoA binding motifs as defined by Position weight matrix (PWM) motif analysis. MondoA binding peaks were found near genes related to (C) insulin signaling, (D) glucose metabolism and hexosamine biosynthetic pathway (HBP), (E) glycogen synthesis and (F) fatty acid metabolism. Genome browser track of MondoA (Con (red) and KD (blue)) and H3K27ac (green) peaks shown for each gene locus. Number in brackets indicates RPM (reads per million).
Figure 4. Loss of MondoA improves HFD-induced glucose tolerance and insulin resistance. (A) Body weight of wild-type (WT) and muscle-specific MondoA deficient (msKO) mice fed chow diet (CD) or 60% high fat diet (HFD) for 16 weeks (n = 8-10 mice per group). (B) Glucose tolerance test (GTT) following glucose injection (1g/kg, i.p.) after a 5h fast. Area under the curve (AUC) for the GTT is also shown (right of graph). (C) Results of insulin tolerance test (ITT) following insulin injection (0.75U/kg, i.p.) after a 5h fast. Data represent the mean ± SEM. *p< 0.05 WT/HFD versus msKO/HFD; 2-way ANOVA with Tukey’s multiple comparisons post-hoc test. (D) Fasting plasma insulin and (E) fasting blood glucose. Data represents mean ± SEM. *p<0.05 vs WT/CD, † p<0.05 vs WT/HFD by one-way ANOVA with Tukey multiple comparison post hoc test.
Figure 5. MondoA deficiency ameliorates insulin signaling and glucose uptake. (A) Western blot analysis of phosphorylated Akt (pAkt S473) and total Akt in response to insulin (1.0U/kg for 10 minutes) in gastrocnemius muscle lysates. Quantification of pAkt/total Akt ratio was determined by Image Studio Lite software (n = 4-6 mice per group). Representative Western blots are shown in the bottom panel. The data represents mean ± SEM. *p<0.05 vs WT/CD, # p<0.05 vs WT/CD with insulin, † p<0.05 vs WT/HFD by one-way ANOVA with Tukey multiple comparison post hoc test. (B) Basal and insulin-stimulated 2DG uptake measured in isolated (ex vivo) soleus muscles +/- insulin (15mU/mL for 15 minutes, n=7-10 mice per group). The data represents mean ± SEM. *p<0.05 vs WT/CD, # p<0.05 vs WT/CD with insulin, † p<0.05 vs WT/HFD by one-way ANOVA with Tukey multiple comparison post-hoc test.
Ahn_Figure 6

A

Fatty acid metabolism

![Graph showing relative mRNA levels of various genes](image)

B

TAG fatty acyl contents

![Bar graph showing TAG levels](image)

C

DAG (nmol/mg protein)

![Bar graph showing DAG levels](image)

D

TAG fatty acyl contents

![Scatter plot showing TAG fatty acyl contents](image)

Fatty acid metabolism

- **Palmitic acid (16:0)**
 - Scd1
 - Elovl6
 - Stearic acid (18:0)
 - Scd1
 - Oleic acid (18:1)

WT msKO

- **Acsl3**
- **Acsl4**
- **Fasn**
- **Fads1**
- **Elov6**
- **Dgat1**
- **Dgat2**

WT msKO HFD

- **Elov5**
- **Elov6**
- **Dgat1**
- **Dgat2**

msKO/CD

- **Acsl3**
- **Acsl4**
- **Fasn**
- **Fads1**
- **Elov5**
- **Dgat1**
- **Dgat2**

msKO/HFD

- **Elov6**
- **Dgat1**
- **Dgat2**
Figure 6. TAG and DAG lipidomic profiles in msMondoA^{−/−} muscle. (A) The expression of MondoA target genes was measured by quantitative RT-PCR in gastrocnemius muscle in mice maintained on a control diet (CD) or HFD for 16 weeks (n = 8-10 mice per group). Total TAG (B) and DAG (C) levels in gastrocnemius muscle. (D) Levels of TAG species (individual TAG fatty acyl content). Bars represent mean ± SEM (n = 8-10 mice per group). * p<0.05 vs WT/CD; † p < 0.05 vs WT/HFD by one-way ANOVA with Tukey multiple comparison post-hoc test.