SUPPLEMENTARY MATERIALS

Microbial dysbiosis underlies high salt intake-associated hypertension


1Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN,

2Vanderbilt Translational and Clinical Cardiovascular Research Center (VTRACC), Vanderbilt University Medical Center, Nashville, TN

3Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN,

4Division of Comparative Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA

5Department of Biostatistics, Biomedical Informatics, Cancer Biology, and Health Policy, Vanderbilt University, Nashville, TN

6Vanderbilt Technologies for Advanced Genomics (VANTAGE) core facility, Vanderbilt University Medical Center, Nashville, TN

7Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI

8Cardiology Division, Department of Medicine, Columbia University Medical Center, New York NY, USA;

9Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville TN,

The authors have declared that no conflict of interest exists.

Address for correspondence:
Annet Kirabo, DVM, MSc, PhD, FAHA
Room 536 Robinson Research Building
Vanderbilt University
Nashville, TN 37232-6602
Telephone 615-343-0933-3049
e-mail annet.kirabo@vumc.org

Jane Ferguson, PhD, FAHA
2220 Pierce Avenue, Preston Research Building Room 354B
Cardiovascular Medicine, Vanderbilt University Medical Center
Nashville, TN 37232
e-mail: jane.f.ferguson@vumc.org
Supplementary Figure 1: Global patterns of differences in gut microbiota in humans consuming sodium above or below the recommendation of 2.3g/day, over short-term (previous week)-and long-term (previous year) periods at the Phylum, Class, Order and family levels.
Supplementary Figure 2: Effect of a high salt diet on renal inflammation. Mice were fed a normal salt diet or a high salt diet, 8% NaCl for 3 weeks. Osmotic mini-pumps were implanted at three weeks to deliver a subcutaneous low dose of angiotensin II (140 mg/kg/hr) for 2 weeks. The mice were sacrificed, and single cell suspensions were prepared from freshly isolated mouse kidneys via enzymatic digestion and mechanical dissociation. Live cell singlets were analyzed for infiltrating renal inflammatory cells including CD45⁺ total leukocytes (A & F), CD3⁺ T lymphocytes (B & G), CD4⁺/CD8⁺ T cell subsets (C, H & I), F4/80⁺ monocytes and macrophages (D & J) and CD19⁺ B lymphocytes (E & K).