In-Press Preview

BACKGROUND. Subgroups of patients with relapsed or refractory (R/R) chronic lymphocytic leukemia (CLL) exhibit suboptimal outcomes after standard therapies, including oral kinase inhibitors. We and others have previously reported on safety and efficacy of autologous CD19-targeted CAR T-cells for these patients; here we report safety and long-term follow-up of CAR T-cell therapy with or without conditioning chemotherapy for patients with R/R CLL and indolent B-cell non-Hodgkin lymphoma (B-NHL).

METHODS. We conducted a phase 1 clinical trial investigating CD19-targeted CAR T-cells incorporating a CD28 costimulatory domain (19-28z). Seventeen of 20 patients received conditioning chemotherapy prior to CAR T-cell infusion. Five patients with CLL received ibrutinib at the time of autologous T-cell collection and/or CAR T-cell administration.

RESULTS. This analysis included 16 patients with R/R CLL and 4 patients with R/R indolent B-NHL. Cytokine release syndrome (CRS) was observed in all 20 patients but grades 3 and 4 CRS and neurological events were uncommon (10% for each). Ex vivo expansion of T-cells and proportions of CD4+/CD8+ CAR T-cells with CD62L+CD127+ immunophenotype were significantly greater in patients on ibrutinib at leukapheresis. Three of 12 evaluable CLL patients receiving conditioning chemotherapy achieved CR (two […]

Find the latest version:

http://jci.me/122627/pdf
Safety and tolerability of conditioning chemotherapy followed by CD19-targeted CAR T-cells for relapsed/refractory CLL

Mark B. Geyer, MD1,2, Isabelle Rivière, PhD2,3,4, Brigitte Sénéchal, PharmD, PhD3,4, Xiuyan Wang, PhD2,3,4, Yongzeng Wang, PhD3, Terence J. Purdon, MS1, Meier Hsu, MS5, Sean M. Devlin, PhD5, M. Lia Palomba, MD1,2, Elizabeth Halton, NP1, Yvette Bernal1, Michel Sadelain, MD, PhD2, Jae H. Park, MD,1,2* and Renier J. Brentjens, MD, PhD1,2,4*

Department of 1Medicine, 2Center for Cell Engineering, 3Michael G. Harris Cell Therapy and Cell Engineering Facility, 4Molecular Pharmacology and Chemistry Program, 5Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY.

*Should be considered equal and co-senior authors.

Corresponding author: Renier J. Brentjens, MD, PhD (brentjer@mskcc.org)
1275 York Ave, New York, NY 10065
Telephone: 212-639-7053

Running title: CD19-targeted CAR T-cell therapy for relapsed CLL

Keywords: Leukemias, cancer immunotherapy (had to be selected from limited list)

Abstract length: 247 words (limit 250 words, standard abbreviations permitted)
Body text, figure legends, tables, references: 9,581 words (5671+350+1641+1958, recommended 9,000 words; limit 12,000 words)
Figures: 5
Tables: 4
Supplement: 5 supplemental figures, 6 supplemental tables
References: 57

Conflict of interest statement:
M.B.G. Dava Oncology (honorarium).
J.H.P: Amgen (consulting/advisory role), Juno Therapeutics (consulting/advisory role, research funding), Genentech/Roche (research funding).
I.R.: Juno Therapeutics (consulting/advisory role, royalty sharing agreement, stock ownership, research funding).
M.S.: Juno Therapeutics (consulting/advisory role, royalty sharing agreement, stock ownership).
R.J.B.: Juno Therapeutics (consulting/advisory role, royalty sharing agreement, stock ownership, research funding).

Role of funding source:
Juno Therapeutics provided financial support for this clinical trial, including product manufacturing (performed at Memorial Sloan Kettering). Research was designed, performed and analyzed by the authors, and the paper was written entirely by the authors, as outlined in ‘Author Contributions’.
Abstract

Background. Subgroups of patients with relapsed or refractory (R/R) chronic lymphocytic leukemia (CLL) exhibit suboptimal outcomes after standard therapies, including oral kinase inhibitors. We and others have previously reported on safety and efficacy of autologous CD19-targeted CAR T-cells for these patients; here we report safety and long-term follow-up of CAR T-cell therapy with or without conditioning chemotherapy for patients with R/R CLL and indolent B-cell non-Hodgkin lymphoma (B-NHL).

Methods. We conducted a phase 1 clinical trial investigating CD19-targeted CAR T-cells incorporating a CD28 costimulatory domain (19-28z). Seventeen of 20 patients received conditioning chemotherapy prior to CAR T-cell infusion. Five patients with CLL received ibrutinib at the time of autologous T-cell collection and/or CAR T-cell administration.

Results. This analysis included 16 patients with R/R CLL and 4 patients with R/R indolent B-NHL. Cytokine release syndrome (CRS) was observed in all 20 patients but grades 3 and 4 CRS and neurological events were uncommon (10% for each). Ex vivo expansion of T-cells and proportions of CD4+/CD8+ CAR T-cells with CD62L+CD127+ immunophenotype were significantly greater in patients on ibrutinib at leukapheresis. Three of 12 evaluable CLL patients receiving conditioning chemotherapy achieved CR (two had minimal residual disease–negative CR). All patients achieving CR remained progression-free at median follow-up of 53 months.

Conclusion. Conditioning chemotherapy and 19-28z CAR T-cells were acceptably tolerated across investigated dose levels in heavily pretreated patients with R/R CLL and indolent B-NHL, and a subgroup of patients achieved durable CR. Ibrutinib therapy may modulate autologous T-cell phenotype.

Trial Registration. ClinicalTrials.gov NCT00466531

Funding. Juno Therapeutics.

Brief Summary (maximum 25 words): Second-generation CD19-targeted CAR T-cell therapy following conditioning chemotherapy was acceptably tolerated in patients with relapsed/refractory CLL; a subgroup of patients achieved durable complete response.
Introduction

Chronic lymphocytic leukemia (CLL) is the most prevalent adult leukemia in Western countries, and over 20,000 patients are newly diagnosed annually in the United States (1, 2). The natural history of CLL is considerably heterogeneous, though the majority of patients eventually require treatment for progressive lymphadenopathy, organomegaly, or bone marrow (BM) failure. While a subset of patients achieve durable complete response (CR) following combination chemoimmunotherapy, this standard treatment of CLL is rarely curative and most patients experience subsequent progression (3). Additionally, in patients who exhibit high-risk features, including unmutated immunoglobulin heavy chain variable region (IgHV), deletion of 17p, or loss of TP53, the duration of response to chemoimmunotherapy is suboptimal (4-8). While oral molecularly targeted kinase inhibitors ibrutinib or idelalisib can be effective lines of further therapy, in patients with CLL who have a 17p deletion, complex karyotype, or had prior CLL treatment, median progression-free survival (PFS) is ≤3 years following initiation of these drugs. Additionally, outcomes following CLL progression on first-line kinase inhibitor therapy are dismal—median PFS is ≤10 months, even in the era of sequential targeted therapies (9-11). As such, subgroups of patients with CLL remain in need of novel therapeutic strategies.

We and others have reported on the use of CD19-targeted chimeric antigen receptor (CAR) modified autologous T-cells bearing a 4-1BB or CD28 costimulatory domain in patients with relapsed or refractory (R/R) CLL, demonstrating safety, tolerability, and in vivo persistence and expansion (12-18). While CD19-targeted CAR T-cell therapy achieves rates of minimal residual disease (MRD)–negative CR exceeding 70% in some series investigating it in R/R B-cell acute lymphoblastic leukemia (B-ALL) (18-25), mature series investigating this therapy in R/R CLL have reported CR rates <30%, though durable MRD-negative CR is observed in a small subset of patients (14, 17).

We previously reported outcomes from the first 8 patients with R/R CLL treated on a phase 1 trial at our institution. No objective responses were observed in that cohort after therapy of CD19-targeted CAR T-cells containing a CD28 costimulatory domain (19-28z) (16). This phase 1 trial began as a CAR T-cell dose escalation study and was subsequently modified to optimize conditioning chemotherapy (based in part on
emerging reports that fludarabine may enhance CAR T-cell expansion, (12, 26), to include patients with indolent B-cell non-Hodgkin lymphoma (B-NHL) and to permit ongoing therapy with ibrutinib at the time of autologous T-cell collection and CAR T-cell infusion. The primary objective of the study was to evaluate the safety and toxicity of 19-28z CAR T-cell therapy with or without conditioning chemotherapy. Herein, we report safety data and long-term follow-up of 20 patients with R/R CLL and indolent B-NHL treated with 19-28z CAR T-cells, including the 8 patients in the aforementioned series (16), and discuss the potential implications of ibrutinib on CAR T-cell manufacturing and phenotype. CAR T-cell doses as high as 3×10^7 19-28z CAR T-cells/kg, infused following one of several regimens of conditioning chemotherapy, were acceptably tolerated in heavily pre-treated patients with R/R CLL and indolent B-NHL. In a subset of patients, this approach was associated with robust in vivo expansion and durable MRD-negative CR, even in the absence of detectable long-term CAR T-cell persistence.

Results

Patient characteristics

Demographic and clinical characteristics of patients with R/R CLL and indolent B-NHL, respectively, are shown in Tables 1 and 2. Study design and conduct is detailed within the “Methods” section. Dose-limiting toxicities (DLT) and cytokine release syndrome (CRS) grading criteria, respectively, are summarized in Tables S1 and S2. The study enrolled 50 patients; 27 patients received CAR T-cell therapy on study, and 20 are included in this analysis (Figure 1). The 7 CAR T-cell recipients excluded from this report received 19-28z CAR T-cells in addition to another cellular product ($n = 5$) or had a diagnosis of Waldenström macroglobulinemia ($n = 2$). This analysis included 16 cases of R/R CLL and 4 cases of R/R B-NHL (marginal zone lymphoma, $n = 2$; follicular lymphoma, $n = 1$; mantle cell lymphoma, $n = 1$). Patients were 70% male (14/20) and the median age at first CAR T-cell infusion was 63 years (range, 43-75). The disease burden of each patient at the time of CAR T-cell infusion is described in Table S3. Of the 23 patients enrolled to the study who did not receive 19-28z CAR T-cells, 17 (74%) elected to pursue alternative therapy, 2 (9%) were
ultimately treated on an alternative CAR T-cell trial, and one (4%) resumed observation; 3 patients (13%) died prior to planned 19-28z CAR T-cell therapy.

Among the CLL patients, 9 had unmutated IgHV. Additional molecular and cytogenetic abnormalities observed in the patients with CLL included deletion of 11q \((n = 5) \), deletion of 17p or loss of \(TP53 \) \((n = 4) \), and complex karyotype \((n = 3) \). Patients had received a median of 4 prior lines of therapy (range, 1-11). Specific therapies administered to each CLL patient prior to CAR T-cell therapy are detailed in Table S4. Six patients with CLL had received ibrutinib therapy prior to CAR T-cell infusion, including continuously prior to leukapheresis \((n = 4 \) for median 4.8 months; range, 2.0-15.5) and continuously prior to CAR T-cell infusion \((n = 5 \) for median 7.0 months; range, 3.5-18.5) (Figure S1). Four patients with B-NHL had received a median of 8 prior lines of therapy (range, 6-10).

The median absolute lymphocyte counts (ALC, K/µL) on the first day of CAR T-cell infusion were 4.4, 0.9, and 0.1 among patients with CLL receiving cyclophosphamide (Cy), bendamustine, or fludarabine/cyclophosphamide (Flu/Cy) conditioning, respectively (Figure S2).

CAR T-cell product manufacturing

Autologous T-cell collection was performed at a median of 38 days (range, 20-225) and 109 days (range, 68-139) prior to CAR T-cell infusion in patients with CLL and B-NHL, respectively; median ALC at the time of leukapheresis was, respectively, 4.3 K/µL (range, 0.3-169.9) and 0.4 K/µL (range, 0.1-2.4). In the CLL cohort, median CD4+:CD8+ ratio in the collected autologous T-cells was 1.9:1 (range, 0.3:1-4.5:1) and in the infused 19-28z CAR T-cell products was 5.7:1 (range, 0.3:1-118.0:1). In the B-NHL cohort, median CD4+:CD8+ ratio in the collected autologous T-cells was 1.9:1 (range, 0.9:1-13.2:1) and in the infused 19-28z CAR T-cell products was 1.8:1 (range, 0.8:1-3.1:1). Median transduction efficiency was 30% (range, 22-59) and median CAR T-cell product manufacturing time was 15 days (range, 11-19) for the entire cohort.

Cumulative expansion of autologous T-cells \textit{ex vivo}, from day 3 to day 11, was significantly greater for the 4 patients on ibrutinib at time of leukapheresis vs. the 11 ibrutinib-naïve patients at the time of leukapheresis (median 143.3-fold vs. 26.1-fold, \(P = 0.040 \)), and approached significance at the end of production (EOP)
(median 373.9-fold vs. 112.7-fold, \(P = 0.056 \)) (Figure 2). The median manufacturing times for the two cohorts were similar (13.5 vs. 16 days).

Immunophenotypic characteristics of EOP T-cells in CLL patients are summarized in Table 3. Compared to those in ibrutinib-naive patients, EOP T-cells in patients undergoing leukapheresis while on ibrutinib demonstrated a higher fraction of CD8\(^+\) CAR\(^+\) T-cells with a CD62L\(^-\)CD127\(^+\) (central memory, T\(_{CM}\)) phenotype (median 29.0\% vs. 1.9\%, \(P = 0.047 \)), a higher fraction of CD4\(^+\) CAR\(^+\) T-cells with a CD62L\(^-\)CD127\(^+\) phenotype (median 58.4\% vs. 5.6\%, \(P = 0.0061 \)), and a lower fraction of CD62L\(^-\) T-cells (effector/effector memory phenotype) across CD8\(^+\) CAR\(^+\) (median 12.8\% vs. 50.4\%, \(P = 0.11 \)) and CD4\(^+\) CAR\(^+\) (median 18.9\% vs. 63.1\%, \(P = 0.024 \)) T-cell subsets. Of note, the fraction of CAR T-cells with an alternative T\(_{CM}\) phenotype (CCR7\(^+\)CD45RA\(^-\)) was small in most patients, though non-significantly greater proportions of CD8\(^+\) CAR\(^+\) T-cells with CCR7\(^+\)CD45RA\(^-\) phenotype (median 1.2 vs. 0.1\%) and CD4\(^+\) CAR\(^+\) T-cells with CCR7\(^+\)CD45RA\(^-\) phenotype (median 1.4\% vs. 0.5\%) were observed among patients undergoing leukapheresis while on ibrutinib (vs. ibrutinib-naive).

Safety and toxicity

Cytokine release syndrome was observed in all patients in this analysis. Due to early development of CRS, the second fraction of CAR T-cells was withheld in 6 of 11 patients with CLL for whom split-dose CAR T-cell infusion had been planned (patients 5-15, see “Methods”), including in 4 of 5 patients on ibrutinib at the time of or immediately prior to CAR T-cell infusion. Maximal CRS severity was most commonly grade 1 (\(n = 8 \)) or grade 2 (\(n = 10 \)); 1 patient developed grade 3 CRS (see Tables 1 and 2). Patient #4 developed persistent fever, hypotension, and renal failure and died within 48 hours of 19-28z CAR T-cell infusion in the setting of a suspected sepsis syndrome, as we have previously reported; however, because of etiologic uncertainty, this patient is classified as having developed grade 5 CRS (27). The duration, severity, and treatment of CRS were recorded for each day of inpatient hospitalization following CAR T-cell infusion (Figure S3); for all infusions complicated by CRS of any grade, the median onset was at day 1 (the day of infusion) and the latest onset was at day 3. Cytokine release syndrome had a median duration of 2 days (range, 1-9). Three patients received the
IL-6 receptor-directed monoclonal antibody tocilizumab for CRS management. In the 5 patients receiving ibrutinib concurrent with or immediately prior to CAR T-cell infusion, maximal severity of CRS was grade ≥2 in 3 patients, 2 of whom required vasopressors and received tocilizumab; both had additionally received fludarabine-containing conditioning chemotherapy.

Six CLL and 3 B-NHL patients developed one or more neurologic adverse events (AEs), excluding isolated headache; 2 of these patients received corticosteroids (see Tables 1 and 2). The duration, severity, and treatment of neurologic toxicity are summarized for individual patients (Figure S4); for all infusions complicated by neurologic toxicity of any grade, the median onset was at day 2 and the latest onset was at day 11. Neurologic toxicity had a median duration of 1 day (range, 1-61). Two patients (#13 and #19) developed reversible grade 3 encephalopathy; patient #19 experienced prolonged encephalopathy and dysphasia, with gradual improvement to baseline (Figure S4). All other neurologic AEs, which comprised encephalopathy (n = 5), dysphasia (n = 3), dysarthria (n = 1), and hallucinations (n = 1), were grade 1 or 2 and were similarly reversible. Four of the 5 CLL patients receiving concurrent ibrutinib (including patient #13) experienced neurologic AEs; of note, one of these patients (#15) experienced no neurologic AEs following initial CAR T-cell infusion, but developed grade 2 dysphasia following a second infusion one month thereafter. Grade 3 or 4 AEs other than CRS and neurologic toxicity considered definitely, probably, or possibly related to protocol therapy are summarized in Table 4.

Survival and clinical responses

Among the 16 treated patients with CLL, the median follow-up for survivors was 40.6 months (range 1.8-79.8), median event-free survival (EFS) was 3.1 months, and median overall survival (OS) was 17.1 months; in the 4 patients with B-NHL, median EFS was 33.4 months and median OS was not reached (Figure 3A, 3B). Clinical responses are summarized in Tables 1 and 2. Objective responses were observed in 6 of 16 CLL patients (38%)—comprising 50% of the 12 CLL patients who had received conditioning chemotherapy and were considered evaluable, and 4 of the 5 patients (80%) receiving concurrent ibrutinib. Three of these 12 CLL patients (evaluable, received conditioning chemotherapy; 25%) achieved CR by International Workshop
on Chronic Lymphocytic Leukemia (IWCLL) criteria; 2 had MRD-negative responses by flow cytometry and deep sequencing for the malignant clonal IgH rearrangement. Three additional CLL patients in this group (25%) achieved CR ($n = 1$) or partial response (PR) ($n = 2$) in the BM and a best overall response of stable disease (SD) by IWCLL criteria.

Patients receiving ibrutinib resumed it post-CAR T-cell infusion (Table S5). Of the 3 CLL patients who achieved CR, 2 were on ibrutinib at leukapheresis and CAR T-cell infusion. One patient achieved MRD-positive CR following CAR T-cell infusion (#12) and remains in CR on ibrutinib maintenance; in the others exposed to ibrutinib, it was ultimately continued until last follow-up (#11), discontinued 13 months post-infusion (in patient #13, who achieved MRD-negative CR and retained that status off all CLL-directed therapy at >40 months post-infusion), continued concomitant with R-CHOP after Richter syndrome developed (#14), and discontinued on progression (#15).

Of the 3 CLL patients who achieved CR, none have experienced relapse. One of the 2 who achieved MRD-negative CR never received ibrutinib and has remained off all CLL-directed therapy and had no evidence of disease for >6 years post-infusion. Of the 12 evaluable CLL patients who did not achieve CR, one was lost to follow-up and 11 patients in active follow-up at MSK have either died as a result of progressive CLL ($n = 8$) or received alternative treatment (ibrutinib, $n = 1$; allogeneic hematopoietic stem cell transplantation, $n = 1$; other investigational therapy, $n = 1$) and remain alive in active follow-up (see Table 1). The rate of EFS did not differ significantly between patients with CLL who attained BM response only (with SD per IWCLL criteria) or had no response. Two patients with B-NHL (50%) were in CR at the time of T-cell infusion and maintained CR, while 2 exhibited SD (see Table 2).

CAR T-cell re-treatment

Three patients with CLL and one patient with mantle cell lymphoma were re-treated with 19-28z CAR T-cells following initial non-response (see Tables 1 and 2). Two patients with CLL developed CRS and neurologic toxicity of grade ≤ 2 following CAR T-cell reinfusion; in both cases, CAR T-cells were detectable in peripheral blood (PB) by quantitative polymerase chain reaction (qPCR) following reinfusion (Figure 4A).
Additionally, in these 2 patients, reduction in BM infiltration by CLL (PR, \(n = 1 \); MRD-positive CR, \(n = 1 \)) was observed following second, but not first, CAR T-cell infusion. In the other 2 re-treated patients, CAR T-cells were not detectable post-reinfusion and best response of SD was observed following reinfusion.

CAR T-cell expansion and persistence

Peak expansion of 19-28z CAR T-cells in PB was observed 7 to 14 days following initial or subsequent CAR T-cell infusion (Figure 4A, 4B). The two patients achieving MRD-negative CR exhibited significantly greater peak CAR T-cell expansion in PB by qPCR \((P = 0.011) \) and fluorescence activated cell sorting (FACS) \((P = 0.00057) \) compared to all other patients. Although patient #12 achieved MRD-positive CR, CAR T-cells were not detectable post-infusion by qPCR or FACS. The CLL patients receiving fludarabine-containing conditioning regimens (patients #13-15) achieved the lowest ALC at time of CAR T-cell infusion (see Figure S2) and significantly greater peak CAR T-cell expansion in PB by qPCR \((P = 0.0077; \text{see Figure 4A, 4B}) \) compared to patients with CLL who did not receive fludarabine during conditioning. In two patients, CAR T-cells were detectable by qPCR in BM but not PB. In two further patients, PB CAR T-cells were detectable by qPCR following brief in vitro expansion, as previously described (16). The maximal detectable CAR T-cell persistence in PB was 21 days.

Cytokine levels

To assess the effects of ibrutinib exposure on immunoregulatory cytokine production, we examined maximal fold increases in selected cytokines following CAR T-cell infusion among 10 evaluable CLL patients who received conditioning chemotherapy (Figure 5), stratified by those who were ibrutinib-naive at the time of CAR T-cell infusion \((n = 5) \) compared with those on ibrutinib during or immediately prior to CAR T-cell infusion \((n = 5) \) (see Table S5 for ibrutinib exposure at time of CAR T-cell infusion). There were significantly higher fold increases in the levels of IL-6 (median 57.6-fold vs. 13.0-fold, \(P = 0.01 \)) and IL-10 (median 72.0-fold vs. 4.7-fold, \(P = 0.02 \)) in ibrutinib-exposed compared to ibrutinib-naive patients, respectively, and a non-significant similar trend in IFN-\(\gamma \) levels (median 52.0-fold vs. 5.3-fold, \(P = 0.10 \)). Trends in cytokine levels for
individual patients before, during, and following CAR T-cell infusion are shown for selected cytokines (Figure S5). Patients #1-3 did not receive conditioning chemotherapy, patient #4 was non-evaluable as previously described, and cytokine samples were not available for patient #8. Patient #16, who had prior ibrutinib exposure but had experienced progression of disease, is not included in the fold-change analysis; her cytokine levels following her first two CAR T-cell infusions are depicted along with others in Figure S5.

Discussion

This phase 1 trial demonstrates the safety and feasibility of 19-28z CAR T-cell therapy in patients with R/R CLL and indolent B-NHL, including in the setting of ongoing therapy with ibrutinib. Despite CAR T-cell doses of up to 3x10^7/kg (10-fold higher than the maximum tolerated dose of 19-28z CAR T-cells in patients with B-ALL), rates of grade ≥3 CRS and neurologic toxicity were only 10%, though all patients developed CRS and transient grade 1-2 neurologic toxicities were not uncommon (35%).Observed rates of CR among patients receiving conditioning chemotherapy prior to 19-28z CAR T-cell infusion were similar to those reported by mature series investigating CD19-targeted CAR T-cell therapies in patients with R/R CLL (12-14, 17, 18). An additional subgroup experienced considerable reduction in BM involvement without achieving objective response by IWCLL criteria, because of persistent nodal involvement; others have also reported apparent greater sensitivity of BM-based compared with lymph node-based CLL to CD19-targeted CAR T-cells (17). In this series, which had a median follow-up of 40.6 months (range, 1.8-79.8), relapse was not observed in the patients achieving CR, similar to the findings reported by Porter et al (14). Two patients achieved MRD-negative CR by flow cytometry and IgH deep sequencing and had ongoing CR at last-follow-up (>6 years in one patient). The 2 CLL patients achieving MRD-negative CR exhibited the most robust CAR T-cell expansion, consistent with other series (14, 17). The length of follow-up herein further confirms that such responses may be sustained despite limited persistence of 19-28z CAR T-cells.

Several series have reported greater CAR T-cell expansion in patients with R/R B-ALL or B-NHL who receive fludarabine as part of conditioning chemotherapy (18, 21, 24, 28). Our data further suggest ibrutinib
therapy concurrent with leukapheresis and CAR T-cell infusion may promote T-cell expansion \textit{ex vivo} and alter CAR T-cell memory phenotypes, though the very small numbers of ibrutinib-naïve vs. ibrutinib exposed patients herein limits firm conclusions and our findings are best considered exploratory and hypothesis-generating. Ibrutinib may also debulk lymph nodes, which appear to be less sensitive to current CAR T-cell therapies, prior to infusion. Autologous T-cells in patients with CLL exhibit impairments in \textit{ex vivo} expansion, compared with T-cells from patients with ALL (29). CLL cells additionally interfere with T-cell effector function and induce T-cell exhaustion (30-33). Off-target effects of ibrutinib may alter T-cell phenotypes via inhibition of IL-2-inducible T-cell kinase (ITK), which may skew CD4$^+$ T-cell subsets from Th2 toward Th1 bias and thereby enhance antitumor immune responses independent of BTK inhibition (34). Fraietta et al. previously reported that T-cells from CLL patients receiving ibrutinib for \geq5 months recovered near-normal proliferative capacity, exhibited decreased expression of PD-1 and CD200, improved \textit{ex vivo} expansion after transduction with a 4-1BB-containing second-generation CD19-targeted CAR (CTL019), and enhanced CTL019 expansion and murine survival in xenograft models bearing Nalm6 and OSU-CLL tumors (29). In this report, CAR T-cells derived from the 4 patients receiving ongoing ibrutinib treatment at leukapheresis exhibited significantly greater \textit{ex vivo} expansion by day 11 and significantly greater fraction of CD8$^+$ CAR$^+$ T-cells with T$_{CM}$ phenotype as defined by co-expression of CD62L and CD127 (35). Of note, a smaller proportion of CAR T-cells exhibited the classic CCR7$^+$CD45RA$^-$ T$_{CM}$ phenotype. While CD62L and CCR7 both serve in trafficking of lymphocytes to secondary lymphoid organs, and several groups have utilized CD62L in lieu of CCR7 to designate T$_{CM}$ subsets (36, 37), discrepancies in CD62L and CCR7 expression have been observed by others (38, 39), and further studies would be required to determine whether CD8$^+$CD62L$^+$CD127$^+$ CAR T-cells functionally recapitulate T$_{CM}$ phenotype in this context, independent of CCR7 expression. Others have previously reported CD8$^+$ CAR T-cells with T$_{CM}$ phenotype appear to demonstrate greatest direct antitumor potency as single subset in NOD/SCID/γc$^{-/}$ mice bearing Raji tumors (40). A recent report also noted a greater portion of CD8$^+$CD45RO$^-$CD27$^+$ T-cells at leukapheresis in patients with CLL achieving CR compared with those achieving PR/non-response following CTL019 infusion (41). CAR T-cell populations herein
demonstrated a notable skew toward CD4+ vs. CD8+ as the dominant population, particularly among the patients with CLL, as observed in other studies (15). In this small series, neither CD4:CD8 ratio at leukapheresis nor proportion of infused CD27+CD8+CAR+ T-cells was associated with ibrutinib exposure or predictive of CR (data not shown), though ibrutinib exposure was associated with differences in T-cell phenotype as described above. Additionally, patients on ibrutinib at the time of CAR T-cell infusion exhibited significantly greater fold increase in IL-6 and IL-10 levels, and a trend toward greater fold increase in IFN-γ levels, compared to ibrutinib-naive patients, further suggesting that ibrutinib exposure may have altered the phenotype of the infused CAR T-cell product, although fludarabine-containing conditioning in 3 of 5 patients may also have modulated CAR T-cell expansion in vivo and enhanced cytokine production.

Gill et al. (42) and Gauthier et al. (43) have recently reported high rates of response in patients with relapsed/refractory CLL treated with ibrutinib followed by CTL119 or JCAR014, respectively, which are both CD19-targeted lentiviral-transduced autologous T-cell products with a 4-1BB costimulatory domain. The majority of patients in both series achieved MRD negativity in the BM by FACS. Several factors may account for the higher observed rates of MRD-negative CR in these series compared to the small number of patients described herein. Patients on ibrutinib at time of leukapheresis in our study had received median 5 prior lines of therapy (range, 1-11) and as such were heavily pretreated. In the report by Gill et al., patients who had achieved a PR following 6 months of ibrutinib were eligible for CTL119 infusion (42); responses to ibrutinib frequently deepen with ongoing therapy, and ongoing anti-CLL activity may have contributed to response. In the report by Gauthier et al., patients were additionally uniformly conditioned with Flu/Cy, which may have contributed to in vivo CAR T-cell expansion (43). Longer-term follow-up for both series will be of interest to determine whether concurrent therapy with ibrutinib and CTL119 or JCAR014 earlier in the course of CLL will lead to high rates of durable MRD-negative CR.

In our study, CRS of all grades was common but grade >2 CRS was observed in only two patients, despite the higher infused doses of 19-28z CAR T-cells (1.0-3.0x10⁷/kg) compared to doses used in patients with R/R B-ALL (1.0-3.0x10⁶/kg)(44) and the high burden of CLL in many patients at the time of CAR T-cell
infusion. These observations suggest the risk of severe CRS may be related to the underlying malignancy, in addition to the infused CAR T-cell dose and overall antigenic burden of disease. Reasons for greater severity of CRS observed in other reports of CD19-targeted CAR T-cell therapy for R/R CLL may include added toxicity of IL-2 administration(12) and greater peak CAR T-cell expansion(45) than observed in the present series. Neurologic toxicity was also uniformly reversible, and grade >2 in only 2 patients, in contrast to the higher rates of grade 3-4 neurologic toxicity observed in patients with R/R B-ALL and diffuse large B-cell lymphoma (DLBCL) (18, 21-25, 46). Defects in T-cell function and proliferation in patients with CLL may also limit CAR T-cell function in vivo and the resulting severity of toxicity (29-33). Nevertheless, one early death was considered possibly related to CRS (27), 2 patients developed reversible grade 3 encephalopathy, and grade 2 CRS was common. The risk of these significant toxicities needs to be weighed against the possibility of deep and sustained CR in medically fit patients with R/R CLL, particularly in light of alternative well-tolerated emerging therapies for R/R CLL including next-generation BTK inhibitors and combination therapies utilizing BCL2 inhibitors.

This study has several notable limitations, including the extended period over which the study enrolled patients and small size, as well as heterogeneity in patient characteristics, conditioning chemotherapy, and CAR T-cell doses within the context of this phase I study. Many patients were enrolled prior to widespread availability of ibrutinib for treatment of R/R CLL, which may have served as effective salvage therapy pre- or post-CAR T-cell infusion. Only a handful of patients with B-NHL are included in this analysis; these data are principally intended to provide pilot data regarding safety. Additionally, many of the patients who signed informed consent never proceeded to undergo leukapheresis, CAR T-cell product manufacturing, or CAR T-cell infusion (Figure 1). In many cases, patients were exploring multiple therapeutic options at our center and others without committing to treatment with 19-28z CAR T-cells, and ultimately elected to pursue or continue alternative therapy. We are also unable to report herein on the subgroup of patients receiving 19-28z CAR T-cells in addition to another cellular therapy, or enrolled patients for whom the leukapheresis product was ultimately used to manufacture CAR T-cells for an alternative clinical trial. Given the above considerations, we
did not consider an intent-to-treat analysis as the most informative representation of our experience, and the results are presented for patients receiving 19-28z CAR T-cells rather than for all patients enrolled; we recognize the proportion of patients achieving CR accordingly represents an even smaller fraction of enrolled compared with treated patients.

In summary, administration of conditioning chemotherapy and 19-28z CAR T-cells was acceptably tolerated in heavily pretreated patients with R/R CLL at CAR T-cell doses 10-fold higher (3x10⁷/kg) than maximum tolerated doses in patients with B-ALL (1-3x10⁶/kg). Toxicities of CAR T-cell infusion were largely manageable across a range of conditioning chemotherapy regimens, including Flu/Cy, and in combination with ibrutinib, though subgroups of patients experienced more severe toxicity (grade ≥3 CRS, 10%; grade 3 neurologic toxicity, 10%). Three of 12 (25%) evaluable CLL patients achieved complete response, and in two patients, complete molecular response was sustained on extended follow-up. Achievement of deeper lymphodepletion may enhance in vivo CAR T-cell expansion in forthcoming studies. While the clinical impact of concurrent ibrutinib therapy at the time of leukapheresis and/or CAR T-cell administration remains uncertain, given the potential of this approach to augment CAR T-cell expansion ex vivo and its tolerability, continuation of ibrutinib (in patients with an appropriate indication) during T-cell collection and infusion appears to be appropriate in the context of ongoing clinical studies, and further investigation may clarify the implications of this approach. We and others are investigating further strategies to enhance the activity of CD19-targeted CAR T-cell therapy, including further engineering of CD19-targeted CAR T-cells to express additional costimulatory ligands (e.g., 4-1BBL, CD40L) (47-49) or secrete immunoregulatory cytokines (e.g., IL-12, IL-18) (50-52), or via extrinsic(53) or cell-intrinsic checkpoint blockade(54); ongoing studies of these novel approaches will aid in optimizing this therapeutic modality for patients with R/R CLL.

Methods

Clinical study
We conducted a single-center, nonblinded, phase 1 clinical trial (NCT00466531) to assess the safety and maximum tolerated dose (MTD) of CD19-targeted CAR T-cells in patients with R/R CLL and indolent B-NHL. Patients were recruited from Memorial Sloan Kettering Cancer Center (MSK) clinics; some had self-referred to MSK clinics or had been referred by outside providers aware of the study. Patients with R/R CLL and indolent B-NHL were eligible (Table S6). CAR T-cell products were infused inpatient at MSK between June 2007 and April 2017. Patients were followed, samples and imaging studies were obtained, and data was collected in the inpatient and outpatient settings at MSK. Data cutoff date was November 29, 2018. This study was conducted in multiple stages as depicted in Figure 1.

In Stage 1 of the study, patients received a single CAR T-cell infusion (1.2-3.0x10^7 CAR T-cells/kg) without antecedent conditioning chemotherapy.

In Stage 2A, the study was modified to include cyclophosphamide (Cy) conditioning chemotherapy prior to CAR T-cell infusion. The first patient (#4) received a single dose of Cy 1.5 g/m^2 conditioning chemotherapy followed by an infusion of 3.0x10^7 CAR T-cells/kg. The clinical course of this patient, who died within 48 hours of infusion, has been previously described extensively. (27) This severe AE was conservatively attributed as possibly related to the treatment, and as such the subsequent 3 patients were treated with a reduced CAR T-cell dose in Stage 2B. These 3 patients received a single dose of Cy 1.5 g/m^2 conditioning chemotherapy followed by CAR T-cell infusion (0.40-1.0x10^7 CAR T-cells/kg). As an additional measure to mitigate risk of severe toxicity, CAR T-cells were administered as a split dose, with one third of the planned total CAR T-cell dose administered on day 0, and the remaining dose administered the next day if the patient remained clinically stable without evidence of hypotension, renal failure, or dyspnea.

In Stage 3, patients received the investigator’s choice of conditioning chemotherapy followed by split-dose CAR T-cell infusion, as above (total dose: 3x10^7 CAR T-cells/kg). In addition, in this stage, the study was modified to include patients with subtypes of R/R indolent B-NHL (Table 2) and to permit ongoing therapy with ibrutinib at the time of autologous T-cell collection and CAR T-cell infusion (Figure S1). Of note, patients with residual CLL following therapy, including ongoing therapy with ibrutinib, were eligible, including patients
on ibrutinib with residual CLL even without overt progression on ibrutinib. In patients on ibrutinib prior to CAR T-cell infusion, ibrutinib was either held immediately prior to CAR T-cell infusion, and then resumed after resolution of any acute post-infusion toxicities or was continued through the time of CAR T-cell infusion, at the discretion of the investigator.

The MTD was defined as the highest dose of CAR T-cells with a dose-limiting toxicity (DLT) rate of <33% out of six patients. A DLT was defined as any adverse event (AE) (see Table S1) occurring within 30 days from the last infusion of 19-28z CAR T-cells. The primary objective was to assess the safety of 19-28z CAR T-cells with or without conditioning chemotherapy. Secondary objectives included assessment of disease response and CAR T-cell persistence. Toxicities were assessed using the Common Terminology Criteria for Adverse Events (CTCAE) v3.0 through 2009, and subsequently assessed using v4.0. Cytokine release syndrome was graded per criteria in Table S2. Per an agreement with another institution, we do not report here the results of treatment for 5 patients receiving 19-28z CAR T-cells in addition to another cellular therapy product.

All patients received levetiracetam as seizure prophylaxis beginning 2 days prior to CAR T-cell infusion. Patients were permitted to receive subsequent infusions of 19-28z CAR T-cells with or without conditioning chemotherapy at the discretion of the investigator.

Generation and expansion of genetically modified T-cells

Peripheral blood leukocytes were obtained from enrolled patients by leukapheresis, and CAR-modified T-cells were produced and released as previously described (16, 19, 55). Briefly, the leukapheresis product was washed and cryopreserved. T-cells from the thawed leukapheresis product were isolated and activated with Dynabeads Human T-Activator CD3/CD28 magnetic beads (Invitrogen) and transduced with gammaretroviral 19-28z vector stocks. Transduced T-cells were then further expanded with the Wave bioreactor to achieve the desired CAR T-cell dose. End-of-process (EOP) CAR T-cell products were characterized immunophenotypically by FACS using commercially available antibodies (see Table 3).

Assessment of 19-28z CAR T-cell persistence
Persistence of 19-28z CAR-modified T-cells in patient PB and BM was assessed by FACS using biotinylated goat antimouse IgG F(ab’)2 (Jackson ImmunoResearch) and by qPCR to determine vector copy number (16, 19). Selected post-infusion samples were tested after brief expansion of T-cells in vitro in the presence of Dynabeads ClinExVivo CD3/CD28, as we have previously described (16, 19). In such patients, detection of CAR T-cells is noted qualitatively only and is not depicted in Figure 4.

Analysis of cytokine profiles following 19-28z CAR T-cell infusion

Serial serum samples were obtained before and after administration of conditioning chemotherapy and following CAR T-cell infusion. Cytokine profiles were analyzed using the Luminex FlexMAP 3D system and commercially available 38-plex cytokine detection assays, as we have previously described (16, 19, 20).

Response assessment

Clinical responses for patients with CLL were assessed using the IWCLL criteria at 3 months and 6 months following CAR T-cell infusion on the basis of clinical examination, laboratory findings, BM aspirate and biopsy analysis, and where appropriate, cross-sectional imaging studies including computed tomography scans (56). Reduction in BM infiltrate or B-lymphoid nodules by ≥50% without full satisfaction of IWCLL criteria for PR or progression of disease was additionally considered to represent objective response (BM PR) with official classification as stable disease (SD) by IWCLL criteria. For patients with other B-NHL, responses were assessed by Revised Criteria for Response Assessment (Lugano Classification) (57). The presence of MRD was assessed by multiparameter flow cytometry and PCR-based (BIOMED-2) or next-generation sequencing-based (LymphoTrack) immunoglobulin heavy chain (IgH) clonality assays (InVivoScribe).

Statistical considerations

Sample size for the phase I portion of the trial was determined based on a modified 3+3 design as previously described. The effects of the study treatment were analyzed in individuals as above. Event-free survival was defined as the time from day 1 of CAR T-cell infusion to the date progression was established or until death from any cause and was assessed using Kaplan-Meier methods. Overall survival was estimated from
the same start date and followed until death from any cause. Patients were censored at date of last follow-up. Continuous variables were compared between two independent groups using the Wilcoxon-Mann-Whitney test (rank-sum test). A P value <0.05 was considered significant. For cytokine analysis, the maximal fold increase was measured from baseline on day 1 of CAR T-cell infusion to peak value within 1 month of CAR T-cell infusion. Levels of 39 cytokines were measured, of which 12 were analyzed but not adjusted for multiple comparisons. The lower and upper limits of detection were used to determine fold change when measured values were above or below these limits. In one patient without evaluable cytokine levels on day 1 of CAR T-cell infusion, the baseline level was defined on the day of conditioning chemotherapy. One patient died within 48 hours of CAR T-cell infusion and was therefore considered non-evaluable for response.

Statistical analyses were performed in SAS 9.4 (SAS Institute, Cary, NC) and Prism v7.01 (GraphPad, San Diego, CA).

Study approval

The Institutional Review Board at MSK reviewed and approved this trial. All patients enrolled and treated on this trial provided written informed consent prior to participation. All clinical investigation was conducted according to the principles of the Declaration of Helsinki.
Authorship

Author Contributions

M.B.G. performed the research, analyzed the results, and wrote the paper. I.R. performed the research and analyzed the results. B.S. performed the research, analyzed the results, and wrote the paper. X.W., Y.W., T.J.P., E.H., and Y.B. performed the research. M.H. and S.M.D. analyzed the results. J.R. performed the research and analyzed the results. M.S. designed the research. M.L.P. designed and performed the research. J.H.P. and R.J.B. designed and performed the research, analyzed the results, and wrote the paper. All authors critically reviewed the paper.

Acknowledgments

This research was funded in part through the NIH/NCI Cancer Center Support Grant P30 CA008748. M.B.G.: Lymphoma Research Foundation, NIH/National Center for Advancing Translational Sciences (NCATS, UL1TR00457), American Society of Hematology Scholar Clinical Fellow Award. I.R.: NIH/National Cancer Institute (P30-CA08748). J.H.P.: Conquer Cancer Foundation of ASCO, Leukemia and Lymphoma Society Career Development Grant, The Geoffrey Beene Cancer Foundation, National Comprehensive Cancer Center Young Investigator Award, and American Society of Hematology Scholar Junior Faculty Award. R.J.B.: CA13873801, The Damon Runyon Clinical Investigator Award, The Translational and Integrative Medicine Fund Research Grant (MSK), The Annual Terry Fox Run for Cancer Research (New York, NY) organized by the Canada Club of New York, Carson Family Charitable Trust, Kate’s Team, Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Cancer Foundation for Research, The Experimental Therapeutics Center of MSK, The Geoffrey Beene Cancer Foundation, and The Bocina Cancer Research Fund. Editorial support in the preparation of this manuscript was provided by Hannah Rice, ELS.
References

33. Sagiv-Barfi I, Kohrt HE, Czerwinski DK, Ng PP, Chang BY, and Levy R. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. *Proc Natl Acad Sci U S A.* 2015;112(9):E966-72.

Figure 1 Legend: Progression of enrolled patients through clinical study. Disposition of enrolled patients and schematic of study stages on which patients were treated. 19-28z, 19-28z CAR T-cells; Cy, cyclophosphamide; Inv. Choice, investigator’s choice; WM/LPL, Waldenstrom macroglobulinemia/lymphoplasmacytic lymphoma.

Figure 1:
Figure 2 Legend: Kinetics of *ex vivo* T-cell expansion. Cumulative fold T-cell expansion *ex vivo* is depicted for patients with CLL on ibrutinib (IBR) at the time of leukaphresis (blue lines) vs. IBR-naive (red lines) vs. post-IBR (green line). Note log scale.

Figure 2
Figure 3 Legend: Survival outcomes. EFS (A) and OS (B) are depicted for patients with CLL (blue lines) and patients with other B-NHL (red lines), measured from the time of first 19-28z CAR T-cell infusion, using the Kaplan-Meier method. B-NHL, B-cell non-Hodgkin lymphoma; CLL, chronic lymphocytic leukemia; EFS, event-free survival; OS, overall survival.

Figure 3

A

![Event-free survival graph](image)

- **CLL**
- **Other B-NHL**

Event = progression of disease or death from any cause

B

![Overall survival graph](image)

- **CLL**
- **Other B-NHL**

Months following first 19-28z CAR T-cell Infusion
Figure 4 Legend: CAR T-cell expansion *in vivo*. (A) 19-28z CAR T-cell expansion, measured in vector copy numbers per mL (vcn/mL) in peripheral blood among patients with CLL with quantifiable CAR T-cell expansion post-infusion. (B) 19-28z CAR T-cell expansion by FACS (CAR⁺ T-cells/mL) in the two patients achieving MRD-negative CR. Note log scale. The two patients achieving MRD-negative CR (**) exhibited significantly greater peak CAR T-cell expansion in PB by qPCR ($P = 0.011$) and FACS ($P = 0.00057$) compared to all other patients (Wilcoxon-Mann-Whitney test). CLL, chronic lymphocytic leukemia; CR, complete response; FACS, fluorescence activated cell sorting; MRD, minimal residual disease; PB, peripheral blood; qPCR, quantitative polymerase chain reaction.

Figure 4

A

![Graph A](image)

B

![Graph B](image)
Figure 5 Legend: Peak levels of immunoregulatory cytokines following CAR T-cell infusion. Dot plots depicting fold increase in cytokine levels from prior to first day of CAR T-cell infusion to peak within 1 month of infusion in 10 evaluable patients with CLL who received conditioning chemotherapy and CAR T-cell infusion, stratified by whether ibrutinib-naive ($n = 5$, open red circles) or on ibrutinib (IBR) at or immediately prior to CAR T-cell infusion ($n = 5$, blue “X” marks). Median fold changes for each group are marked with black bars. Patients with ongoing or recent ibrutinib exposure at the time of CAR T-cell infusion exhibited significantly greater median fold increase in IL-6 and IL-10 (Wilcoxon-Mann-Whitney test). CLL, chronic lymphocytic leukemia. Note log scale.

Figure 5
Table 1: Demographic and clinical characteristics of treated patients with R/R CLL and outcomes.

<table>
<thead>
<tr>
<th>Pt</th>
<th>Trial Stage</th>
<th>Age</th>
<th>Sex</th>
<th>Cyto</th>
<th>IgHV</th>
<th>Prior purine analog</th>
<th>IBR Exposure</th>
<th>Conditioning Chemotherapy for Each Infusion</th>
<th>Infused 19-28z CAR T-cells/kg</th>
<th>CRS Grade</th>
<th>NT Grade</th>
<th>Best Response</th>
<th>TTP (mon.)</th>
<th>Next Tx</th>
<th>Clinical Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>51</td>
<td>M</td>
<td>dell1q, dell3q</td>
<td>NE</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>None</td>
<td>3.06 x 10^6</td>
<td>1</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>PD</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>72</td>
<td>M</td>
<td>NK</td>
<td>U</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>None</td>
<td>1.34 x 10^6</td>
<td>2</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>PD</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>73</td>
<td>F</td>
<td>NK</td>
<td>NE</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>None</td>
<td>1.01 x 10^6</td>
<td>1</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>PD</td>
</tr>
<tr>
<td>4</td>
<td>2A</td>
<td>69</td>
<td>M</td>
<td>dell1q, dell3q</td>
<td>NE</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Cy 1.5 g/m^2 x 1d</td>
<td>3.03 x 10^6</td>
<td>5^i</td>
<td>0</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>5</td>
<td>2B</td>
<td>68</td>
<td>M</td>
<td>CK, dell1q, dell3q</td>
<td>NE</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Cy 1.5 g/m^2 x 1d</td>
<td>5.61 x 10^6</td>
<td>2</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>SD</td>
</tr>
<tr>
<td>6</td>
<td>2B</td>
<td>67</td>
<td>M</td>
<td>dell1q</td>
<td>U</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Cy 1.5 g/m^2 x 1d</td>
<td>2.92 x 10^6</td>
<td>2</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>PD</td>
</tr>
<tr>
<td>7</td>
<td>2B</td>
<td>62</td>
<td>M</td>
<td>TP53 loss, dell3q</td>
<td>U</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Cy 1.5 g/m^2 x 1d</td>
<td>7.59 x 10^6</td>
<td>2</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>SD</td>
</tr>
<tr>
<td>8^i</td>
<td>3</td>
<td>61</td>
<td>M</td>
<td>dell1p, dell3q</td>
<td>U</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1: Cy 1.5 g/m^2 x 1d</td>
<td>8.77 x 10^6</td>
<td>1</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>SD</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>74</td>
<td>M</td>
<td>CK</td>
<td>M</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Benda 70 mg/m^2 x 2d</td>
<td>1.64 x 10^6</td>
<td>2</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>SD</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>48</td>
<td>M</td>
<td>NK</td>
<td>NE</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Benda 90 mg/m^2 x 1d</td>
<td>3.14 x 10^6</td>
<td>2</td>
<td>0</td>
<td>MRD- CR</td>
<td>CR</td>
<td>MRD- CR</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>43</td>
<td>F</td>
<td>3 copies 1q25</td>
<td>U</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Cy 1.5 g/m^2 x 1d</td>
<td>1.17 x 10^6</td>
<td>2</td>
<td>1</td>
<td>PR</td>
<td>NR</td>
<td>SD</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>55</td>
<td>M</td>
<td>NK</td>
<td>NE</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Cy 1.5 g/m^2 x 1d</td>
<td>5.38 x 10^6</td>
<td>1</td>
<td>0</td>
<td>MRD+ CR</td>
<td>^i</td>
<td>53.3+</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>57</td>
<td>F</td>
<td>TP53 loss, trisomy 12</td>
<td>U</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Cy 300 mg/m^2 + Flu 25 mg/m^2 x 2d</td>
<td>1.06 x 10^6</td>
<td>3</td>
<td>3</td>
<td>MRD- CR</td>
<td>^i</td>
<td>40.6+</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>62</td>
<td>M</td>
<td>dell3q</td>
<td>U</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Cy 1.5 g/m^2 + Flu 25 mg/m^2 x 2d</td>
<td>2.55 x 10^6</td>
<td>2</td>
<td>1</td>
<td>NR</td>
<td>NR</td>
<td>PD</td>
</tr>
<tr>
<td>15^i</td>
<td>3</td>
<td>66</td>
<td>M</td>
<td>CK, TP53 loss</td>
<td>U</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>1: Cy 3 g/m^2 x 1d + Flu 25 mg/m^2 x 2d</td>
<td>2.89 x 10^6</td>
<td>2</td>
<td>0</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>16^i</td>
<td>3</td>
<td>56</td>
<td>F</td>
<td>dell3q, dell11q</td>
<td>U</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Cy 3 g/m^2 x 1d</td>
<td>1.06 x 10^6</td>
<td>0</td>
<td>0</td>
<td>MRD+ CR</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td>1.04 x 10^6</td>
<td>0</td>
<td>0</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
</tr>
</tbody>
</table>

Footnotes: ^a See supplemental methods. ^b At first CAR T-cell infusion. ^c Death considered possibly related to CAR T-cell infusion/CRS, though sepsis syndrome suspected as most likely cause of death.

^d Received multiple CAR T-cell infusions. ^e Measured from first infusion; received second infusion 1 month following first infusion. ^f No pathologic adenopathy prior to or following CAR T-cell infusion.

^g Received second infusion 8 days following first infusion, then re-treated for PD, with fourth infusion 8 days following 3rd infusion.

Legend: alloHCT, allogeneic hematopoietic cell transplantation; Aph, on IBR at apheresis; Benda, bendamustine; BM, bone marrow; CK, complex karyotype; CR, complete response; CRS, cytokine release syndrome; Cy, cyclophosphamide; Cyto, notable cytogenetic features; Flu, fludarabine; HSP, heat shock protein; IBR, ibrutinib; IgHV, immunoglobulin heavy chain variable region; Inf, on IBR immediately prior to infusion of CAR T-cells; IWCLL, International Working Group on CLL; Len, lenalidomide; LN, lymph node; MRD, minimal residual disease; N/A, not applicable; NE, not evaluated; NK, normal karyotype; NR, no objective response; NT, neurologic toxicity; Obin, obinutuzumab; PD, progression of disease; POD, prior progression of disease on IBR; PR, partial response; Pt, patient reference number; SD, stable disease; TTP, time to progression; Tx, treatment; U, unmutated/M, mutated; Ven, venetoclax. + indicates ongoing response. TTP measured from first infusion to progression and from third infusion to subsequent progression.

Chemotherapy regimens: R-CVP: rituximab, cyclophosphamide, vincristine, and prednisone; R-CHOP: ituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone.
<table>
<thead>
<tr>
<th>Pt</th>
<th>Dx</th>
<th>Age</th>
<th>Sex</th>
<th>Cyto</th>
<th>Prior therapy</th>
<th>Conditioning Chemotherapy for Infusion</th>
<th>Infused 19-28z CAR T-cells/kg</th>
<th>CRS Grade</th>
<th>NT Grade</th>
<th>Best Response</th>
<th>TTP (mon.)</th>
<th>Next Tx</th>
<th>Clinical Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>FL</td>
<td>56</td>
<td>M</td>
<td>t(14;18), +18, +del7q, CK</td>
<td>Rituximab, R-CHOP, rituximab, BR, buparlisib (clinical trial), PI3K/HDAC inhibitor (clinical trial), R-GemOx, venetoclax (clinical trial), R-lenalidomide, hyperCVAD</td>
<td>Cy 3 g/m² + Flu 25 mg/m² x2d</td>
<td>6.25 x 10⁶</td>
<td>1</td>
<td>2</td>
<td>NED</td>
<td>SD</td>
<td>SD</td>
<td>39.8+</td>
</tr>
<tr>
<td>18</td>
<td>MZL</td>
<td>70</td>
<td>F</td>
<td>NK</td>
<td>RT, R-CHOP, HDT/ASCT, RT, R-BAC, RT, rituximab</td>
<td>Flu 25 mg/m² x3d</td>
<td>1.08 x 10⁶</td>
<td>1</td>
<td>1</td>
<td>NED</td>
<td>NED</td>
<td>NE</td>
<td>Alive 24.7 months post-infusion on continued observation</td>
</tr>
<tr>
<td>19</td>
<td>MZL</td>
<td>71</td>
<td>M</td>
<td>NK</td>
<td>R-CHOP, R-ICE, R-GemOx, splenectomy, R-IVAC, R-hyperCVAD</td>
<td>Cy 1.5 g/m² + Flu 25 mg/m² x3d</td>
<td>3.42 x 10⁷</td>
<td>1</td>
<td>3</td>
<td>NED</td>
<td>NED</td>
<td>NE</td>
<td>NED at 13.8 months. Died 27.0 months post-infusion at outside institution, unrelated to lymphoma.</td>
</tr>
<tr>
<td>20</td>
<td>MCL</td>
<td>75</td>
<td>F</td>
<td>NK</td>
<td>R-lenalidomide, BVR, palbociclib and bortezomb, Ibr, idelalisib, R-CHOP, VPER, venetoclax, DICE, 1st: Cy 1.5 g/m² 2nd: None</td>
<td>3.85 x 10⁶ 3.98 x 10⁶</td>
<td>1 0 0</td>
<td>NE⁵ SD SD</td>
<td>3.1</td>
<td>RT</td>
<td>Alive with disease 10.0 months post-infusion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnotes: ⁴ At first CAR T-cell infusion. ⁵ Received multiple CAR T-cell infusions. ⁶ BM not evaluated immediately following CAR T-cell infusion, as had no evidence of BM involvement prior to CAR T-cell infusion, but developed eventual progression in BM concurrent with progression at other sites. ⁷ No cytogenetic abnormalities documented, though Cyclin D1 overexpression confirmed.

Legend: CK, complex karyotype; Cy, cyclophosphamide; Cyto, notable cytogenetic features; Dx, diagnosis; FL, follicular lymphoma; Flu, fludarabine; HDT/ASCT, high dose chemotherapy with autologous stem cell rescue; IBr, ibritinib; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; NE, not evaluable; NED, No evidence of disease prior to or following CAR T-cell infusion; NK, normal karyotype; PI3K/HDAC, phosphoinositide 3-kinase/ histone deacetylase; Pt, patient reference number; R, rituximab; RT, radiation therapy; SD, stable disease.

Chemotherapy regimens: BR: bendamustine and rituximab; BVR: bendamustine, bortezomib, and rituximab; DICE: dexamethasone, ifosfamide, cisplatin, and etoposide; hyperCVAD: hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone; R-BAC: rituximab, bendamustine, and cytarabine; R-CHOP: rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone; R-GemOx: rituximab, gemcitabine, and oxaliplatin; R-ICE: rituximab, ifosfamide, cisplatin, and etoposide; R-IVAC: rituximab, ifosfamide, etoposide, and cytarabine; VPER: bortezomib, ifosfamide, cisplatin, etoposide, and rituximab.

29
Table 3: T-cell memory subset immunophenotyping of end-of-production CAR T-cells in patients with CLL.

<table>
<thead>
<tr>
<th>Staining Panel</th>
<th>CCR7, CD45RA</th>
<th>CD62L, CD127</th>
<th>CD27, CD28</th>
</tr>
</thead>
<tbody>
<tr>
<td>On IBR at Apheresis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 4)</td>
<td>CD8⁺ CAR⁺ Gate</td>
<td>73.4</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>CD8⁻ CAR⁺ Gate</td>
<td>37.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Evaluable IBR-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naive Patients</td>
<td>CD8⁺ CAR⁺ Gate</td>
<td>82.6</td>
<td>10.9</td>
</tr>
<tr>
<td>at Apheresis</td>
<td>CD8⁻ CAR⁺ Gate</td>
<td>57.4</td>
<td>4.4</td>
</tr>
<tr>
<td>(n = 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Evaluable</td>
<td>CD8⁺ CAR⁺ Gate</td>
<td>80.7</td>
<td>10.0</td>
</tr>
<tr>
<td>Patients</td>
<td>CD8⁻ CAR⁺ Gate</td>
<td>51.3</td>
<td>3.8</td>
</tr>
<tr>
<td>(n = 12)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A Excludes the first 4 patients accrued, whose enrollment predated the staining panels used above. B Includes the patient who had progressed on IBR and was off IBR for 19 months prior to autologous T-cell collection. IBR, ibrutinib.
Table 4: Numbers of patients with grade 3-5 adverse events definitely, probably, or possibly related to protocol therapy as assessed by CTCAE v4.0, other than cytokine release syndrome. Maximal grade of each adverse effect is documented for each individual patient.

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Total Grade 3-5</th>
<th>Grade 3</th>
<th>Grade 4</th>
<th>Grade 5ariant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Anemia</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Hypophosphatemia</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Hypotension</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hyponatremia</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypocalcemia</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tumor lysis syndrome</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Acidosis</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AST increased</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Renal failure</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ALT increased</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alkaline phosphatase increased</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blood bilirubin increased</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encephalopathy</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Enterocolitis</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fibrinogen decreased</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Identified in patient #4, whose course is described further within the manuscript.