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Introduction
Cystic fibrosis (CF) is caused by mutations in the gene encoding CF transmembrane conductance regulator 
(CFTR), and lung disease is the major source of  morbidity and mortality (1–3). CFTR is an apical mem-
brane anion channel that provides a pathway for secretion of  Cl– and HCO3

– into the airway surface liquid 
(ASL) and submucosal gland lumen (4, 5).

The loss of  CFTR-mediated HCO3
– secretion in CF predicts that the HCO3

– concentration and pH of  
ASL and submucosal gland secretions will be reduced. Consistent with this prediction, ASL in differenti-
ated cultures of  human CF airway epithelia has a lower pH than non-CF epithelia in most measurements 
(6–9). ASL was also abnormally acidic in airway epithelia cultured from CF pigs (7, 10–13), which develop 
airway disease similar to that in humans (14, 15). Submucosal gland secretions from human CF epithelia 

BACKGROUND. Disruption of cystic fibrosis transmembrane conductance regulator (CFTR) anion 
channel function causes cystic fibrosis (CF), and lung disease produces most of the mortality. Loss 
of CFTR-mediated HCO3

– secretion reduces the pH of airway surface liquid (ASL) in vitro and in 
neonatal humans and pigs in vivo. However, we previously found that, in older children and adults, 
ASL pH does not differ between CF and non-CF. Here, we tested whether the pH of CF ASL increases 
with time after birth. Finding that it did suggested that adaptations by CF airways increase ASL pH. 
This conjecture predicted that increasing CFTR activity in CF airways would further increase ASL pH 
and also that increasing CFTR activity would correlate with increases in ASL pH.

METHODS. To test for longitudinal changes, we measured ASL pH in newborns and then at 3-month 
intervals. We also studied people with CF (bearing G551D or R117H mutations), in whom we could 
acutely stimulate CFTR activity with ivacaftor. To gauge changes in CFTR activity, we measured 
changes in sweat Cl– concentration immediately before and 48 hours after starting ivacaftor.

RESULTS. Compared with that in the newborn period, ASL pH increased by 6 months of age. In 
people with CF bearing G551D or R117H mutations, ivacaftor did not change the average ASL pH; 
however reductions in sweat Cl– concentration correlated with elevations of ASL pH. Reductions in 
sweat Cl– concentration also correlated with improvements in pulmonary function.

CONCLUSIONS. Our results suggest that CFTR-independent mechanisms increase ASL pH in people 
with CF. We speculate that CF airway disease, which begins soon after birth, is responsible for the 
adaptation.
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were also abnormally acidic (16). In addition, in vivo and ex vivo studies of  newborn CF pigs revealed an 
abnormally acidic ASL pH (7, 10). In CF rats, in vivo ASL pH was abnormally acidic at 1–6 months after 
birth (17). The acidic pH and reduced HCO3

– concentration disrupt respiratory host defense by impairing 
mucociliary transport and antimicrobial activity (10, 11, 18–20).

In an earlier pilot study, we measured the pH of  nasal ASL in neonates identified by newborn screening 
for CF, but before it was known whether or not they had CF. Compared with non-CF neonates, CF neo-
nates (<1 month old) had a lower ASL pH (21). Yet in older children (median age, 3 years) and adults with 
CF, we found that ASL pH did not differ from that of  people without CF (21). An earlier study also found 
no CF/non-CF difference in older children (median age, 12 years) or adults (22). A recent study of  children 
(median age, 4.2 years) also reported no difference between genotypes (9). However, how ASL pH changes 
in an individual after the neonatal period is unknown.

Our in vivo results suggest that, in CF, ASL pH may increase with time to reach the pH of  non-CF 
ASL. That could occur if  CFTR-independent mechanisms increase ASL pH in CF. From that scenario, 
we made two predictions. (a) If  we could precisely reproduce CF-induced secondary changes in non-CF 
airways, then CFTR-independent mechanisms occurring in addition to CFTR HCO3

– secretion would fur-
ther increase ASL pH. How we might do this is unclear. (b) If  we could acutely restore CFTR activity to 
CF airways, then CFTR activity occurring in addition to CFTR-independent changes would raise pH. We 
hypothesized that, in adults with CF, increasing CFTR activity would increase ASL pH. We also hypothe-
sized that a greater increase in CFTR activity would produce a greater increase in ASL pH.

To test the second prediction, we studied people with CF who carry either a G551D or R117H mutation 
and increased CFTR activity with ivacaftor. We had an opportunity to perform this study when ivacaftor 
was approved in Ireland as a treatment for patients carrying a G551D or R117H mutation. Ivacaftor imme-
diately increases the open-state probability of  CFTR-G551D and CFTR-R117H channels, reduces sweat 
[Cl–], and increases pulmonary function measured as the percentage predicted forced expiratory volume 
in 1 second (FEV1%) (23–26). In addition, when at least one CFTR allele has a G551D mutation, ivacaftor 
increases ASL pH in cultured CF airway epithelia (27) and pH in the small intestinal lumen of  people 
with CF (28). Our hypothesis was that, as CFTR activity increases, ASL pH would increase. To gauge iva-
caftor-induced increases in CFTR activity, we measured the change in sweat [Cl–]. Changes in sweat [Cl–] 
are currently the most reliable and accessible means of  assessing changes in CFTR activity in vivo. We also 
measured changes in FEV1%. We studied people immediately before and 48 hours after beginning the drug; 
ivacaftor reaches steady-state concentrations in 2–3 days (29). This approach minimizes secondary conse-
quences of  restoring CFTR function and reduces the influence of  changes in disease severity.

Results
CF ASL pH is abnormally acidic at birth and increases with time. In an earlier pilot study, we measured ASL 
pH in neonates who screened as positive for immunoreactive trypsinogen before the sweat [Cl–] or genetic 
results were known (21). Thus, we were blinded to genotype. Since then, we have studied an additional 5 
neonates. Compared with infants without CF, a combined group of  11 CF neonates (Table 1) had a lower 
ASL pH (Figure 1A).

To test whether ASL pH increases with time, we studied the babies with CF after the initial analysis. Com-
pared with the initial measurement in newborn babies with CF, by 6 months of  age, ASL pH was increased 
(Figure 1B). All the babies had CF pathogens present in cultures and/or neutrophilic inflammation in bron-
choalveolar lavage fluid, consistent with previous reports (30–32).

These data suggest that after the neonatal period, CFTR-independent mechanisms increase ASL pH in 
CF airways. The cause is unknown. We speculate that airway inflammation, infection, and remodeling might 
be responsible. Consistent with that speculation, cytokines that are elevated in CF airways, such as IL-17, 
IL-1β, IL-4, IL-13, and IFN-γ, raise ASL pH in non-CF epithelia (33–36), and IL-1β has been reported to 
increase paracellular permeability (37). Moreover, viral infections, with their associated inflammation, can 
increase ASL pH in vivo (38). However, there are also reports that ASL pH is decreased in exhaled breath 
condensate of  people with asthma and CF (39, 40). Because ASL pH did not differ among neonates, older 
children, and adults without CF, developmental changes seem less likely to be responsible (21). However, we 
cannot exclude the possibility that developmental differences in CF and non-CF airways are responsible. If  
ASL pH increases in CF airways after the neonatal period, then acutely adding CFTR activity in addition to 
those changes should further increase ASL pH. We tested that prediction using ivacaftor.
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Increases in ASL pH and FEV1% correlate with reductions in sweat [Cl–]. We studied people with CF who 
carried a G551D or R117H mutation and made measurements before and 48 hours after beginning ivacaftor. 
We previously reported sweat [Cl–] and FEV1% for people with at least one copy of  a G551D mutation 
(41–43). Here, we performed a similar study in people with CF carrying at least one R117H mutation. We 
combined the data for sweat [Cl–] and FEV1% for people with either mutation (Table 2). The sweat [Cl–] 
fell, and FEV1% increased (Figure 2, A and B). We also measured the pH of  nasal ASL in both groups. In 
contrast to our prediction, ASL pH did not change significantly (Figure 2C). However, given the variance of  
ASL pH measurements, we were markedly underpowered to detect a difference of  0.2 pH units or greater.

Ivacaftor will increase CFTR activity to variable extents in different individuals. Therefore, we predict-
ed that a greater change in sweat [Cl–] would be associated with a greater change in FEV1%. That was the 
case (Figure 3A). We also predicted that even though ivacaftor did not significantly increase average ASL 
pH, there would be a correlation between the magnitude of  change in CFTR activity (measured as sweat 
[Cl–]) and the change in ASL pH. We found that, when ivacaftor produced a greater reduction in sweat 
[Cl–], there was a greater increase in ASL pH (Figure 3B). There was also a trend (P = 0.13) for a positive 
correlation between increases in ASL pH and FEV1% (Figure 3C). These results suggest that, as CFTR 
activity increases in CF airways, ASL pH increases.

Discussion
This study had several advantages. First, by studying newborns, we could compare neonates with and with-
out CF before airways developed the marked inflammation and infection that characterize CF. Second, the 
study population of  people with ivacaftor-responsive CFTR mutations allowed us to increase CFTR activity 
in addition to chronic CF-associated changes in the airways. Third, the design of  the study took advantage 
of  the immediate effect of  ivacaftor on CFTR (23) and the near steady-state concentration achieved within 
2 days of  beginning administration (29). That allowed us to make measurements at time 0 and 48 hours and 
thereby diminish any effect of  changes in an individual’s disease severity, metabolism, or environmental 
exposures. That short interval likely also minimizes secondary consequences of  partially restoring CFTR 
activity. The ability to minimize confounding factors may explain why we found a correlation between an 
individual’s reduction in sweat [Cl–] and an increase in FEV1%, whereas previous studies had only found a 
correlation between changes in sweat [Cl–] and FEV1% at the population level (44, 45). Fourth, in contrast to 
comparing groups of  people with and without CF, individuals served as their own controls. The chance to 
study a group of  people who initiated treatment at the same time at one location provided a unique opportu-
nity to address this question. Fifth, these were in vivo measurements rather than assays in culture.

Table 1. Clinical characteristics, throat cultures, and bronchoscopy results of neonates with CF

Genotype IRT (ng/ml) Sweat [Cl–] 
(mEq/l)

ASL pH Cultures BALF

F508del/G551DA 195 78 6.6 3 mo and 15 mo, Pseudomonas aeruginosa and 
Staphylococcus aureus

15 mo, 20% PMNs

F508del/G542XA 87 97 4.8 6 mo, Pseudomonas aeruginosa 12 mo, 50% PMNs
F508del/F508delA 231 77 4.5 Neg 18 mo, 50% PMNs
G542X/N1303KA 166 93 4.8 12 mo, Streptococcus 12 mo, 15% PMNs
F508del/G542XA 423 70 5.9 3 mo and 6 mo, Pseudomonas aeruginosa; 15 mo, 

Staphylococcus aureus
15 mo, 53% PMNs

F508del/F508delA 132 90 5.7 3 mo, Haemophilus Not done
F508del/N1303K 202 75 5.2 3 mo, Haemophilus; 6 mo, Moraxella 6 mo, 4% PMNs
F508del/F508del 163 95 6.9 Birth, 3 mo, 6 mo, 9 mo, 12 mo, and 18 mo, 

Staphylococcus aureus
9 mo, 12% PMNs

F508del/F508del 122 106 4.6 Birth and 6 mo, Staphylococcus aureus 6 mo, 3% PMNs
F508del/1998+1G > A 93 104 6.2 Neg 6 mo, 13% PMNs
F508del/F508del 290 89 6.7 Birth, Stenotrophomonas; 6 mo, Staphylococcus 

aureus
Not done

IRT, immunoreactive trypsinogen; PMNs, polymorphonuclear cells; BALF, Bronchoalveolar lavage fluid.  AData for these infants can be found in ref. 21. There 
were no previous longitudinal data for any of these babies. Data for sweat [Cl–] are average of 2 measurements.
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This study also has limitations. We measured ASL pH on nasal rather than intrapulmonary epithelia. 
However, the pH of  nasal ASL correlates closely with pH of  lower airway ASL (22). In addition, it would 
be important to measure pH in the lumen of  submucosal glands where much of  the mucus and liquid is 
generated, but this is not currently possible in vivo (5, 16). Another limitation is that ASL pH values showed 
substantial variability; how much technical and biological factors contribute to the variation is uncertain.

ASL pH is controlled by CFTR-mediated HCO3
– secretion and by CFTR-independent processes. At 

birth, loss of  CFTR reduces ASL pH. At later time points, CFTR-independent adaptations increase pH 
in CF ASL, and CF and non-CF adults and older children have a similar ASL pH, despite the loss of  
CFTR-mediated HCO3

– secretion. Our longitudinal data and the response to ivacaftor support these con-
clusions but do not identify the non-CFTR mechanisms that increase ASL pH in CF. We speculate that 
the pH of  non-CF ASL would be higher if  non-CF airways had infection, inflammation, and remodeling 

Figure 1. Airway surface liquid pH is abnormally acidic in cystic fibrosis neonates and increases by 3 months of 
age. (A) The non-CF group includes 4 neonates without cystic fibrosis transmembrane conductance regulator (CFTR) 
mutations and 41 neonates heterozygous for a CFTR mutation. The cystic fibrosis (CF) group includes 11 neonates. Bars 
and whiskers indicate mean ± SD. *P = 0.01 by Mann-Whitney test. (B) Airway surface liquid (ASL) pH in CF neonates 
(n = 11) measured at birth and at 3-month intervals. Data points and connecting lines represent values for individuals. 
We compared values at birth and at 6 months, a time point when we had data for 10 of the participants. *P = 0.025 by 
Wilcoxon matched-pairs signed-rank test.

Table 2. Baseline clinical characteristics of study subjects

Genotype Age Sex % Predicted FEV1 (l) Sweat [Cl–] (mEq/l)
G551D/F508del 23 F 79 (2.8 L) 99.9
G551D/F508del 25 F 72 (2.42 L) 102.6
G551D/F508del 23 F 79 (2.46 L) 90.6
G551D/F508del 30 F 40 (1.11 L) 65.7
G551D/F508del 27 F 51 (1.49 L) 91.5
G551D/3659delC 22 F 39 (1.25 L) 109
G551D/F508del 33 F 88 (2.54 L) 105
G551D/p67L 57 F 34 (0.82 L) 80.9
G551D/F508del 35 F 77 (2.16 L) 98.6
G551D/G551D 29 M 101 (3.99 L) 110.3
G551D/F508del 30 M 39 (1.6 L) 108.2
G551D/R117H 33 M 72 (2.76 L) 61.9
R117H/F508del 45 M 108 (3.80 L) 98
R117H/F508del 40 M 96 (3.75 L) 81
R117H/F508del 41 F 87 (2.44 L) 61
R117H/F508del 34 F 62 (1.81 L) 71
R117H/F508del 40 M 75 (3.05 L) 78
R117H/F508del 52 M 69 (2.39 L) 90
R117H/M156R 42 F 43 (1.37 L) 61
R117H/M156R 40 M 35 (1.49 L) 66
R117H/2622+1G→A 25 M 75 (3.41 L) 89
R117H/F508del 46 F 62 (1.90 L) 80
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identical to that in CF airways. Conversely, we speculate that the pH of  ASL in CF adults might be lower 
in the absence of  CFTR-independent adaptations.

These results may also have implications for respiratory host defense. Previous studies showed that 
there may not be a single optimal value for ASL pH; as pH and HCO3

– concentration increase, MCT and 
antimicrobial activity increase (10–12, 46). Therefore, increasing ASL pH may be of  therapeutic benefit. 

Thus, a better understanding of  the mechanisms responsible for 
a CFTR-independent increase in ASL pH might be exploited to 
enhance airway defense in CF and perhaps other airway diseases.

Methods
Study participants. From April 2012 until June 2016, in Iowa, 
we enrolled 56 newborns who had a screening immunoreactive 
trypsinogen ≥ 65 ng/ml. We measured nasal ASL pH at their 
first clinic visit (age varied from a few days after birth to <1 
month), before results of  the sweat [Cl–] or genetic test results 
were known. For many of  the participants, we were able to repeat 
the measurement of  nasal ASL pH at 3-month intervals over the 
course of  18 months. Table 1 shows the genotypes, sweat [Cl–], 
and initial ASL pH. The table also shows evidence of  the devel-
opment of  CF airway disease based on throat swab cultures and 
fiber optic bronchoscopic examination of  the airways with collec-
tion of  bronchoalveolar lavage.

We enrolled adult subjects with CF who had at least one 
G551D or R117H allele in two prospective observational studies at 
a single CF center, the National Referral Centre for Adult Cystic 
Fibrosis. Inclusion criteria included an age ≥18 years (both male 
and female subjects were enrolled), a clinical diagnosis of  CF and 

Figure 2. Ivacaftor acutely reduces sweat Cl– concentration and increases forced expiratory volume in 1 second. (A) 
Sweat Cl– concentration, (B) forced expiratory volume in 1 second (FEV1%), and (C) airway surface liquid (ASL) pH on day 
0 and 2 days after beginning ivacaftor. Each pair of data points and connecting lines indicate a different person. n= 22 for 
sweat [Cl–] and FEV1%; n= 21 for ASL pH (1 person declined ASL pH measurements). Bars and whiskers indicate mean ± SD. 
We did not detect an effect of sex or genotype on the results. *P < 0.001 by Wilcoxon matched-pairs signed-rank test.

Figure 3. Ivacaftor-induced changes in sweat Cl– concentration 
correlate with changes in forced expiratory volume in 1 second and 
airway surface liquid pH. (A) Relationship between changes in sweat 
Cl– concentration and changes in forced expiratory volume in 1 second 
(FEV1%) (P = 0.034 Spearman rank correlation, 0.46 correlation coeffi-
cient, n = 22). (B) Relationship between changes in sweat Cl– concentra-
tion and changes in airway surface liquid (ASL) pH (P = 0.038 Spearman 
rank correlation, 0.45 correlation coefficient, n = 21). (C) Relationship 
between changes in ASL pH and changes in FEV1% (P = 0.132 Spearman 
rank correlation, 0.34 correlation coefficient, n = 21).

https://doi.org/10.1172/jci.insight.121468
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a G551D-CFTR or R117H-CFTR mutation on at least 1 allele, clinical stability with no significant changes in 
health status within 14 days prior to visit 1, and a negative serum pregnancy test at screening for females of  
childbearing potential. Exclusion criteria included participation in the VX-770 Extended Access Program 
or use of  ivacaftor within 6 months prior to visit 1; an acute upper or lower respiratory infection, pulmo-
nary exacerbation, or changes in therapy (including antibiotics) for pulmonary disease within 4 weeks of  
visit 1; history of  solid-organ transplantation; ongoing pregnancy or breastfeeding; ongoing participation 
in another therapeutic clinical study or prior participation in an investigational drug study within 30 days 
before screening; use of  any inhibitors or inducers of  cytochrome P450 3A4; any non–CF-related illness 
within 2 weeks before visit 1; or abnormal renal or liver function at screening. Standard therapy for CF 
was allowed to continue, except for inhaled bronchodilators that were held the morning of  visits. Table 2 
summarizes the clinical characteristics of  participants. Measurements of  sweat [Cl–], spirometry, and ASL 
pH were obtained at baseline and 2 days after starting ivacaftor. Values of  sweat [Cl–] and FEV1% for par-
ticipants with a G551D mutation have been reported previously (41–43).

Sweat [Cl–]. Sweat was collected with the Macroduct collection system (Wescor), and sweat [Cl–] was 
measured using routine laboratory techniques.

Spirometry. Spirometric measurements were obtained in accordance with the American Thoracic Soci-
ety Standards. The FEV1 predicted values are based on the European Community for Coal and Steel 1993 
values for adults.

ASL pH. We used a Sandhill ZepHr PHNS-P (Sandhill Scientific) Mobidium pH probe with an internal 
reference electrode to measure ASL pH in the nose. Prior to each study, the pH probe was calibrated in buffer 
solutions of pH 6, 7, and 8 (VWR). Voltage was recorded with an Oakton pH6 + meter (Cole-Parmer) and cor-
rected to temperature. The probe was positioned 1 cm (neonates) or 6 cm (adults) from the most caudal aspect 
of the columella. The catheter remained in position until the reading was stable for 15 seconds. All measure-
ments were taken by the same operator. One person in the ivacaftor study declined measurement of ASL pH.

Statistics. Data are presented as values for individual participants with mean ± SD indicated by bars. 
For statistical analysis, we used a Mann-Whitney test for unpaired comparisons and reported significance 
with a 2-tailed P value. For paired comparisons, we used Wilcoxon matched-pairs signed-rank test and 
reported significance with a 2-tailed P value. In Figure 1B, at 6 months, we had ASL pH measurements 
from 10 of  the 11 neonates. Therefore, we used this time point to compare to measurements at birth. In 
Figure 3, we tested correlations with a nonparametric Spearman correlation coefficient. Differences were 
considered statistically significant at P < 0.05.

Study approval. All participants (and their guardians, as applicable) provided written informed consent. 
The studies were approved by the University of  Iowa Institutional Review Board and the Research Ethics 
Committee of  St. Vincent’s University Hospital.
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